Q. 1 Show that the points $(-4,-9),(2,0)$ and $(4,3)$ are collinear.

Solution: Let A, B and C be the given points respectively. Then
$\mathrm{A} \rightarrow(-4,-9)$

$\mathrm{B} \rightarrow(2,0)$$\quad$| $A B=$ | $\sqrt{(2+4)^{2}+(0+9)^{2}}$ |
| ---: | :--- |
| $=\sqrt{6^{2}+9^{2}}=\sqrt{36+81}$ | |
| | $=\sqrt{117}=\sqrt{9 \times 13}=3 \sqrt{13}$. |

Q. 2 Show that the points $(3,-2),(2,5)$ and $(8,-7)$ form an isosceles triangle

Solution:

Let the given points be P, Q and R respectively. One way of proving that $\triangle P Q R$ is an isosceles triangle is to show that two of its sides are of equal length. Here we have

$$
\begin{aligned}
& d(P, Q)=\sqrt{(2-3)^{2}+(5+2)^{2}}=\sqrt{1^{2}+7^{2}}=\sqrt{1+49}=\sqrt{50}=5 \sqrt{2 .} . \\
& d(Q, R)=\sqrt{(8-2)^{2}+(-7-5)^{2}}=\sqrt{6^{2}+12^{2}}=\sqrt{36+144}=\sqrt{180}=6 \sqrt{5 .} \\
& d(R, P)=\sqrt{(8-3)^{2}+(-7+2)^{2}}=\sqrt{5^{2}+(-5)^{2}}=\sqrt{25+25}=\sqrt{50}=5 \sqrt{2 .} \\
& \therefore d(P, Q)=d(R, P) \neq d(Q, R) .
\end{aligned}
$$

$\therefore \triangle P Q R$ is an isosceles triangle but not an equilateral triangle.

Q.3. Show that the points $(0,3),(0,1)$ and ($) 2,3$ are the vertices of an equilateral triangle.

Solution: Let the points be A, B and C respectively. One way of showing that $\triangle A B C$ is an equilateral triangle is to show that all its sides are of equal length. Here we find that

$$
\begin{aligned}
& d(A, B)=\sqrt{(0-0)^{2}+(1-3)^{2}}=\sqrt{0^{2}+(-2)^{2}}=\sqrt{4}=2 . \\
& d(B, C)=\sqrt{(\sqrt{3}-0)^{2}+(2-1)^{2}}=\sqrt{3+1}=\sqrt{4}=2 . \\
& d(C, A)=\sqrt{(0-\sqrt{3})^{2}+(3-2)^{2}}=\sqrt{3+1}=\sqrt{4}=2 . \\
& \therefore d(A, B)=d(B, C)=d(C, A) .
\end{aligned}
$$

$\therefore \triangle A B C$ is an equilateral triangle.
Q.4. Examine whether the points $P(7,1), Q(-4,-1)$ and $R(4,5)$ are the vertices of a right triangle.

Solution: The points P, Q, R form a triangle. To show that $\triangle P Q R$ is a right triangle, we have to show that one vertex angle is 90°. This is done by showing that the lengths of the sides of the triangle satisfy Pythagoras theorem.

$$
\begin{aligned}
& P Q=\sqrt{(-4-7)^{2}+(-1-1)^{2}}=\sqrt{121+4}=\sqrt{125}=5 \sqrt{5 .} \\
& Q R=\sqrt{(4+4)^{2}+(5+1)^{2}}=\sqrt{64+36}=\sqrt{100}=10 . \\
& P R=\sqrt{(4-7)^{2}+(5-1)^{2}}=\sqrt{9+16}=\sqrt{25}=5 . \\
& \therefore P Q^{2}=125, Q R^{2}=100 \text { and } P R^{2}=25 . \\
& \text { We observe that } Q R^{2}+P R^{2}=P Q^{2} .
\end{aligned}
$$

\therefore The Pythagoras formula is satisfied.
$\therefore \triangle P Q R$ is a right triangle with right angle at R.
Q.5. Show that the points $(1,2),(2,-1),(5,3)$ and $(4,6)$ taken in order form a parallelogram. Is it a rectangle

Solution: Let the points be P1, P2 , P3 and P4 respectively. One way of showing that P1 P2 P3 P4 is a parallelogram is to show that the opposite sides are of equal length.

$$
\begin{aligned}
& P_{1} P_{2}=\sqrt{(2-1)^{2}+(-1-2)^{2}}=\sqrt{1+9}=\sqrt{10 .} \\
& P_{2} P_{3}=\sqrt{(5-2)^{2}+(3+1)^{2}}=\sqrt{9+16}=\sqrt{25 .} \\
& P_{3} P_{4}=\sqrt{(4-5)^{2}+(6-3)^{2}}=\sqrt{1+9}=\sqrt{10} . \\
& P_{4} P_{1}=\sqrt{(4-1)^{2}+(6-2)^{2}}=\sqrt{9+16}=\sqrt{25} . \\
& \therefore P_{1} P_{2}=P_{3} P_{4}=\sqrt{10} \text { and } P_{2} P_{3}=P_{4} P_{1}=\sqrt{25} . \\
& \therefore P_{1} P_{2} P_{3} P_{4} \text { is a parallelogram. Since } \\
& P_{1} P_{3}=\sqrt{(5-1)^{2}+(3-2)^{2}}=\sqrt{16+1}=\sqrt{17} \text { and } \\
& \left(P_{1} P_{2}\right)^{2}+\left(P_{2} P_{3}\right)^{2}=10+25=35,\left(P_{1} P_{3}\right)^{2}=17,\left(P_{1} P_{2}\right)^{2}+\left(P_{2} P_{3}\right)^{2} \neq\left(P_{1} P_{3}\right)^{2} . \\
& \therefore \Delta P_{1} P_{2} P_{3} \text { is not a right triangle. } \\
& \therefore \angle P_{1} P_{2} P_{3} \text { is not a right angle. } \\
& \therefore P_{1} P_{2} P_{3} P_{4} \text { is not a rectangle. }
\end{aligned}
$$

Q.6. Show that the points $(0,-1),(-2,3),(6,7)$ and $(8,3)$, taken in order form the vertices of a rectangle.
Solution: Let the points be A, B, C and D respectively. One way of showing that $A B C D$ is rectangle is to show that the opposite sides are of equal length and one corner angle is 90°. One way of showing that one corner angle is 90° is to show that the lengths of the sides of $\triangle A B C$ satisfy the Pythagoras theorem.
$A B=\sqrt{(-2-0)^{2}+(3+1)^{2}}=\sqrt{4+16}=\sqrt{20}=2 \sqrt{5}$.
$B C=\sqrt{(6+2)^{2}+(7-3)^{2}}=\sqrt{64+16}=\sqrt{80}=4 \sqrt{5}$.
$C D=\sqrt{(8-6)^{2}+(3-7)^{2}}=\sqrt{4+16}=\sqrt{20}=2 \sqrt{5}$.
$A D=\sqrt{(8-0)^{2}+(3+1)^{2}}=\sqrt{64+16}=\sqrt{80}=4 \sqrt{5}$.

$A C=\sqrt{(6-0)^{2}+(7+1)^{2}}=\sqrt{36+64}=\sqrt{100}=10$
We observe that $A B=C D=2 \sqrt{5}, B C=A D=4 \sqrt{5}$
and $A B^{2}+B C^{2}=20+80=100=A C^{2}$
$\therefore A B C D$ is a rectangle but not a square.
Q. 7 Show that the points $(0,-1),(2,1)(0,3)$ and $(-2,1)$ taken in order form the vertices of a square.

Solution: Let A, B, C, D be the given points respectively.
One way of showing that $A B C D$ is a square is to show that all its sides are of equal length and the diagonals are of equal length.

$$
\begin{aligned}
& A B=\sqrt{(2-0)^{2}+(1+1)^{2}}=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2,} \\
& B C=\sqrt{(0-2)^{2}+(3-1)^{2}}=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2,} \\
& C D=\sqrt{(-2-0)^{2}+(1-3)^{2}}=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2,} \\
& A D=\sqrt{(-2-0)^{2}+(1+1)^{2}}=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2,}
\end{aligned}
$$

$$
\begin{aligned}
& B D=\sqrt{(-2-2)^{2}+(1-1)^{2}}=\sqrt{16+0}=\sqrt{16}=4, \\
& A C=\sqrt{(0-0)^{2}+(3+1)^{2}}=\sqrt{0+16}=\sqrt{16}=4
\end{aligned}
$$

We observe here that
$A B=B C=C D=A D=2 \sqrt{2}$ and $B D=A C=4$.
$\therefore A B C D$ is a square.
Prove that the points $A(2,-3), B(6,5), C(-2,1)$ and $D(-6,-7)$, taken in order form a rhombus but not a square.
Solution: One way of showing that $A B C D$ is a rhombus is to show that all its sides are of equal length. One way is showing that a rhombus is not a square is to show that the diagonals are of unequal length

ACBSE Coaching for DYathematics and Science

$$
\begin{array}{rlrlrl}
A B & =\sqrt{(6-2)^{2}+(5+3)^{2}} & & B C=\sqrt{(-2-6)^{2}+(1-5)^{2}} & & A C=\sqrt{(-2-2)^{2}+(1+3)^{2}} \\
& =\sqrt{16+64} & =\sqrt{64+16}=\sqrt{80} & & =\sqrt{16+16}=\sqrt{32} \\
& =\sqrt{80} & & & & \\
B D & =\sqrt{(-6-6)^{2}+(-7-5)^{2}} & & C D=\sqrt{(-6+2)^{2}+(-7-1)^{2}} & A D=\sqrt{(-6-2)^{2}+(-7+3)^{2}} \\
& =\sqrt{144+144}=\sqrt{288} & & =\sqrt{16+64}=\sqrt{80} & & =\sqrt{64+16}=\sqrt{80} .
\end{array}
$$

The area of a triangle is 5 . Two of its vertices area $(2,1)$ and $(3,-2)$. The third vertex lies on $y=x$ +3 . Find the third vertex.

Let the third vertex be $\left(x_{3}, y_{3}\right)$ area of triangle $=\frac{1}{2} \|\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$

$$
\text { As } \quad x_{1}=2 y_{1}=1 ; x_{2}=3, y_{2}=-2 ; \quad \text { Area of } \Delta=5 \text { sq. unit } \quad \Rightarrow \quad 5=\frac{1}{2}\left|2\left(-2-y_{3}\right)+3\left(y_{3}-1\right)+x_{3}(1+2)\right|
$$

$\Rightarrow \quad 10=\left|3 x_{3}+y_{3}-7\right| \quad \Rightarrow \quad 3 x_{3}+y_{3}-7= \pm 10 \quad$ Taking negative sing
Taking positive sign

$$
\begin{equation*}
3 x_{3}+y_{3}-7=10 \Rightarrow \quad 3 x . \therefore+y_{3}=17 \tag{i}
\end{equation*}
$$

$$
\begin{align*}
& \Rightarrow \quad 3 x_{3}+y_{3}-7=-10 \\
& \Rightarrow \quad 3 x_{i .}+y_{3}=-3 \tag{ii}
\end{align*}
$$

Given that $\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$ lies on $\mathrm{y}=\mathrm{x}+3$
So, $\quad-x_{i} .+y_{3}=3$
Solving eq. (i) \& (iii)

$$
\mathrm{x}_{3}=\frac{7}{2}, \quad \mathrm{y}_{3}=\frac{13}{2}
$$

Solving eq. (ii) \& (iii)

$$
x_{3}=\frac{-3}{2}, \quad y_{3}=\frac{3}{2}
$$

So the third vertex are $\left(\frac{7}{2}, \frac{13}{2}\right)$ or $\left(\frac{-3}{2}, \frac{3}{2}\right)$

In what ratio does the X -axis divide the line segment joining the points $(2,-3)$ and $(5,6)$?
Let the required ratio be $\mathrm{k}: 1$. Then the coordinates of the point of division are $\left(\frac{5 \lambda+2}{\mathrm{k}+1}, \frac{6 \lambda-3}{\mathrm{k}+1}\right)$. But, it is a point on X -axis on which y -coordinate of every point is zero.

$$
\therefore \quad \frac{6 \lambda-3}{\mathrm{k}+1}=0 \quad \Rightarrow \quad \mathrm{k}=\frac{1}{2} \text { Thus, the required ratio is } \frac{1}{2}: 1 \text { or } 1: 2 \text {. }
$$

$\mathrm{P}(\mathrm{x}, \mathrm{y}), \mathrm{A}(5,1)$ and $\mathrm{B}(-1,5)$ are the given points. $\mathrm{AP}=\mathrm{BP} \quad$ (Given) $\therefore \quad \mathrm{AP}^{2}=\mathrm{BP}^{2}$ or $\quad \mathrm{AP}^{2}-\mathrm{BP}^{2}=0 \quad$ or $\quad\left\{(\mathrm{x}-5)^{2}+(\mathrm{y}-1)\right\}^{2}-\left\{(\mathrm{x}+1)^{2}+(\mathrm{y}-5)^{2}\right\}=0$
or $x^{2}+25-10 x+y^{2}+1-2 y-x^{2}-1-2 x-y^{2}-25+10 y=0 \quad$ or $\quad-12 x+8 y=0 \quad$ or $\quad 3 x x=2 y$.

