Class 10 Chapter 10. TANGENTS TO A CIRCLE

1. If $P A B$ is a secant to a circle intersecting the circle at A and B and $P T$ is a tangent segment, Then $\mathrm{PA} \times \mathrm{PB}=\mathrm{PT}^{2}$

2. If a chord is drawn through the point of contact of a tangent to a circle, then the angles which this chord makes with the given tangent are equal respectively to the angle formed in the corresponding alternate segment.

3. If $A B$ and $C D$ are two chords intersecting at a point P inside the circle such that $A P=C P$, show that $A B=C D$.

4. In figure, the in circle of $\triangle A B C$ touches the sides $B C, C A$ and $A B$ at D, E and F respectively. Show that $A F+B D+C E=A E+B F+C D=1 / 2($ perimeter of $\triangle A B C)$
5. If all the sides of a parallelogram touch a circle, show that the parallelogram is a rhombus.

6. In the figure TP is a tangent and PAB is a secant to the circle. If the bisector of $<A T B$ intersects AB at M , show that(i) $<\mathrm{PMT}=<\mathrm{PTM}$ (ii) $\mathrm{PT}=\mathrm{PM}$

7. Two circles cut at A and B and a straight line PAQ cuts the circles at P and Q. If the tangents at P and Q intersect in T , prove that $\mathrm{P}, \mathrm{B}, \mathrm{Q}, \mathrm{T}$ are con cyclic.

