CIRCLES

1. Prove that the parallelogram circumscribing a circle is rhombus.

Ans Given : ABCD is a parallelogram circumscribing a circle.
To prove : - ABCD is a rhombus

> or
> $\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}$

Proof: Since the length of tangents from external are equal in length

$$
\begin{align*}
\therefore \mathrm{AS} & =\mathrm{AR} \tag{1}\\
\mathrm{BQ} & =\mathrm{BR} \tag{2}\\
\mathrm{QC} & =\mathrm{PC} \tag{3}\\
\mathrm{SD} & =\mathrm{DP} \tag{4}
\end{align*}
$$

Adding (1), (2), (3) \& (4).
$\mathrm{AS}+\mathrm{SD}+\mathrm{BQ}+\mathrm{QC}=\mathrm{AR}+\mathrm{BR}+\mathrm{PC}+\mathrm{DP}$
$A D+B C=A B+D C$
$A D+A D=A B+A B$
Since $\mathrm{BC}=\mathrm{AD} \& \mathrm{DC}=\mathrm{AB}$ (opposite sides of a parallelogram are equal)
$2 \mathrm{AD}=2 \mathrm{AB}$
$\therefore \mathrm{AD}=\mathrm{AB}$
$\mathrm{BC}=\mathrm{AD}$ (opposite sides of a parallelogram)
$\mathrm{DC}=\mathrm{AB} \int$
From (5) and (6)
$\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}$
Hence proved

2. A circle touches the side $B C$ of a triangle $A B C$ at P and touches $A B$ and $A C$ when produced at Q and R respectively as shown in figure.
Show that $\mathrm{AQ}=\frac{1}{2}$ (perimeter of triangle ABC)

A

P
B
Q
R

Ans: Since the length of tangents from external point to a circle are equal.

$$
\begin{aligned}
& A Q=A R \\
& B Q=B P \\
& P C=C R \\
& \text { Since } A Q=A R \\
& A B+B Q=A C+C R \\
& \therefore A B+B P=A C+P C(\text { Since } B Q=B P \& P C=C R)
\end{aligned}
$$

Perimeter of $\triangle \mathrm{ABC}=\mathrm{AB}+\mathrm{AC}+\mathrm{BC}$

$$
\begin{aligned}
& =A B+B P+P C+A C \\
& =A Q+P C+A C(\text { Since } A B+B P=A Q) \\
& =A Q+A B+B P(\text { Since } P C+A C=A B+B P) \\
& =A Q+A Q(\text { Since } A B+B P=A Q)
\end{aligned}
$$

Perimeter of $\triangle \mathrm{ABC}=2 \mathrm{AQ}$
$\therefore \mathrm{AQ}=\frac{1}{2}$ (perimeter of triangle ABC)
3. In figure, $X P$ and $X Q$ are tangents from X to the circle with centre O. R is a point on the circle. Prove that $\mathrm{XA}+\mathrm{AR}=\mathrm{XB}+\mathrm{BR}$

Ans: Since the length of tangents from external point to a circle are equal
$\mathrm{XP}=\mathrm{XQ}$
$P A=R A$
$B Q=B R$

File downloaded from http://jsuniltutorial.weebly.com

$$
\begin{aligned}
& \mathrm{XP}=\mathrm{XQ} \\
& \Rightarrow \mathrm{XA}+\mathrm{PA}=\mathrm{XB}+\mathrm{BQ} \\
& \Rightarrow \mathrm{XA}+\mathrm{AR}=\mathrm{XB}+\mathrm{BR}\lfloor P A=A R \& B Q=B R \\
& \text { Hence proved }
\end{aligned}
$$

4. In figure, the incircle of triangle ABC touches the sides BC, CA, and AB at D, E, and F respectively. Show that $A F+B D+C E=A E+B F+C D=\frac{1}{2}$ (perimeter of triangle ABC),

Ans: Since the length of tangents from an external point to are equal

$$
\begin{aligned}
\therefore \mathrm{AF} & =\mathrm{AE} \\
\mathrm{FB} & =\mathrm{BD} \\
\mathrm{EC} & =\mathrm{CD}
\end{aligned}
$$

Perimeter of $\triangle \mathrm{ABC}=\mathrm{AB}+\mathrm{BC}+\mathrm{AC}$

$$
=\mathrm{AF}+\mathrm{FB}+\mathrm{BD}+\mathrm{DC}+\mathrm{AE}+\mathrm{EC}
$$

$$
=\mathrm{AF}+\mathrm{BD}+\mathrm{BD}+\mathrm{CE}+\mathrm{AF}+\mathrm{CE}
$$

$$
(\because \mathrm{AF}=\mathrm{AE}, \mathrm{FB}=\mathrm{BD}, \mathrm{EC}=\mathrm{CD})
$$

$$
=\mathrm{AF}+\mathrm{AF}+\mathrm{BD}+\mathrm{BD}+\mathrm{CE}+\mathrm{CE}
$$

Perimeter of $\triangle \mathrm{ABC}=2(\mathrm{AF}+\mathrm{BD}+\mathrm{CE})$
$\therefore \mathrm{AF}+\mathrm{BD}+\mathrm{CE}=\frac{1}{2}($ perimeter of $\triangle \mathrm{ABC})$
Perimeter of $\triangle \mathrm{ABC}=\mathrm{AB}+\mathrm{BC}+\mathrm{AC}$
$=A F+F B+B D+D C+A E+E C$
$=\mathrm{AE}+\mathrm{BF}+\mathrm{BF}+\mathrm{CD}+\mathrm{AE}+\mathrm{CD}$ $(\because \mathrm{AF}=\mathrm{AE}, \mathrm{FB}=\mathrm{BD}, \mathrm{EC}=\mathrm{CD})$
$=A E+A E+B F+B F+C D+C D$

Perimeter of $\triangle \mathrm{ABC}=2(\mathrm{AE}+\mathrm{BF}+\mathrm{CD})$
$\therefore \mathrm{AE}+\mathrm{BF}+\mathrm{CD}=\frac{1}{2}($ perimeter of $\triangle \mathrm{ABC})$
From (1) and (2)
$\mathrm{AF}+\mathrm{BD}+\mathrm{CE}=\mathrm{AE}+\mathrm{BF}+\mathrm{CD}=\frac{1}{2}($ perimeter of $\triangle \mathrm{ABC})$
5. A circle touches the sides of a quadrilateral ABCD at $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S respectively. Show that the angles subtended at the centre by a pair of opposite sides are supplementary.

Ans: To prove :- $\quad \angle \mathrm{AOB}+\angle \mathrm{DOC}=180^{\circ}$

$$
\angle \mathrm{BOC}+\angle \mathrm{AOD}=180^{\circ}
$$

Proof : - Since the two tangents drawn from an external point to a circle subtend equal angles at centre.
$\therefore \angle 1=\angle 2, \angle 3=\angle 4, \angle 5=\angle 6, \angle 7=\angle 8$
but $\angle 1+\angle 2+\angle 3+\angle 4+\angle 5+\angle 6+\angle 7+\angle 8=360^{\circ}$
$2(\angle 2+\angle 3+\angle 6+\angle 7)=360^{\circ}$
$\angle 2+\angle 3+\angle 6+\angle 7=360^{\circ}$
$\therefore \angle \mathrm{AOB}+\angle \mathrm{DOC}=180^{\circ}$
Similarly
$\angle 1+\angle 2+\angle 3+\angle 4+\angle 5+\angle 6+\angle 7+\angle 8=360^{\circ}$
$2(\angle 1+\angle 8+\angle 4+\angle 5)=360^{\circ}$
$\angle 1+\angle 8+\angle 5=180^{\circ}$
$\therefore \angle \mathrm{BOC}+\angle \mathrm{AOD}=180^{\circ}$
Hence proved

6. In figure, O is the centre of the Circle . AP and AQ two tangents drawn to the circle. B is a point on the tangent QA and $\angle \mathrm{PAB}=125^{\circ}$, Find $\angle \mathrm{POQ}$.
(Ans: 125°)

Ans: Given $\angle \mathrm{PAB}=125^{\circ}$
To find : $-\angle \mathrm{POQ}=$?
Construction : - Join PQ
Proof : - $\angle \mathrm{PAB}+\angle \mathrm{PAQ}=180^{\circ}$ (Linear pair)
$\angle \mathrm{PAQ}+125^{\circ}=180^{\circ}$
$\angle \mathrm{PAQ}=180^{\circ}-125^{\circ}$
$\angle \mathrm{PAQ}=55^{\circ}$
Since the length of tangent from an external point to a circle are equal.
$\mathrm{PA}=\mathrm{QA}$
\therefore From $\triangle \mathrm{PAQ}$
$\angle \mathrm{APQ}=\angle \mathrm{AQP}$

In $\triangle \mathrm{APQ}$

$$
\begin{aligned}
& \angle \mathrm{APQ}+\angle \mathrm{AQP}+\angle \mathrm{PAQ}=180^{\circ} \text { (angle sum property) } \\
& \angle \mathrm{APQ}+\angle \mathrm{AQP}+55^{\circ}=180^{\circ} \\
& 2 \angle \mathrm{APQ}=180^{\circ}-55^{\circ}(\because \angle \mathrm{APQ}=\angle \mathrm{AQP}) \\
& \angle \mathrm{APQ}=\frac{125^{\circ}}{2} \\
& \therefore \angle \mathrm{APQ}=\angle \mathrm{AQP}=\frac{125^{\circ}}{2}
\end{aligned}
$$

OQ and OP are radii
QA and PA are tangents

$$
\therefore \angle \mathrm{OQA}=90^{\circ}
$$

$$
\& \angle \mathrm{OPA}=90^{\circ}
$$

$$
\angle \mathrm{OPQ}+\angle \mathrm{QPA}=\angle \mathrm{OPA}=90^{\circ}(\text { Linear Pair })
$$

$$
\angle \mathrm{OPQ}+\frac{125^{\circ}}{2}=90^{\circ}
$$

$$
\angle \mathrm{OPQ}=90^{\circ}-\frac{125^{\circ}}{2}
$$

$$
=\frac{180^{\circ}-125^{\circ}}{2}
$$

$$
\angle \mathrm{OPQ}=\frac{55^{\circ}}{2}
$$

Similarly $\angle \mathrm{OQP}+\angle \mathrm{PQA}=\angle \mathrm{OQA}$

$$
\begin{aligned}
& \angle \mathrm{OQP}+\frac{125^{\circ}}{2}=90^{\circ} \\
& \angle \mathrm{OQP}=90^{\circ}-\frac{125^{\circ}}{2} \\
& \angle \mathrm{OQP}=\frac{55^{\circ}}{2}
\end{aligned}
$$

In $\triangle \mathrm{POQ}$

$$
\begin{aligned}
& \angle \mathrm{OQP}+\angle \mathrm{OPQ}+\angle \mathrm{POQ}=180^{\circ}(\text { angle sum property }) \\
& \frac{55^{\circ}}{2}+\frac{55^{\circ}}{2}+\angle \mathrm{POQ}=180^{\circ} \\
& \angle \mathrm{POQ}+\frac{110}{2}=180^{\circ} \\
& \angle \mathrm{POQ}=180^{\circ}-\frac{110}{2} \\
& \angle \mathrm{POQ}=\frac{360^{\circ}-110^{\circ}}{2} \\
& \angle \mathrm{POQ}=\frac{250^{\circ}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \angle \mathrm{POQ}=125^{\circ} \\
& \therefore \angle \mathrm{POQ}=125^{\circ}
\end{aligned}
$$

7. Two tangents PA and PB are drawn to the circle with center O , such that $\angle A P B=120^{\circ}$. Prove that $\mathrm{OP}=2 \mathrm{AP}$.

Ans: Given :- $\angle \mathrm{APB}=120^{\circ}$
Construction : -Join OP
To prove : - $\mathrm{OP}=2 \mathrm{AP}$
Proof :- $\angle \mathrm{APB}=120^{\circ}$
$\therefore \angle \mathrm{APO}=\angle \mathrm{OPB}=60^{\circ}$
$\operatorname{Cos} 60^{\circ}=\frac{A P}{O P}$
$\frac{1}{2}=\frac{A P}{O P}$

$\therefore \mathrm{OP}=2 \mathrm{AP}$
Hence proved
8. From a point P , two tangents PA are drawn to a circle with center O . If $\mathrm{OP}=$ diameter of the circle show that triangle APB is equilateral.

Ans: $\mathrm{PA}=\mathrm{PB}$ (length of tangents from an external point
From $\triangle \mathrm{OAP}$,
$\sin \angle \mathrm{APO}=\frac{O A}{O P}=\frac{1}{2}$
Since OP = 2OA (Since OP=Diameter)
$\therefore \angle \mathrm{APO}=30^{\circ}$
since $\triangle \mathrm{APO} \cong \triangle \mathrm{BPO}$
$\angle \mathrm{APO}=\angle \mathrm{BPO}=30^{\circ}$
$\therefore \angle \mathrm{APB}=60^{\circ}$
$\triangle \mathrm{APB}$ is equilateral

9. In the given fig OPQR is a rhombus, three of its vertices lie on a circle with centre O If the area of the rhombus is $32 \sqrt{3} \mathrm{~cm}^{2}$. Find the radius of the circle.

Ans: $\quad \mathrm{QP}=\mathrm{OR}$
$\mathrm{OP}=\mathrm{OQ}$
$\therefore \triangle \mathrm{OPQ}$ is a equilateral Δ.
area of rhombus $=2(\operatorname{ar}$ of $\Delta \mathrm{OPQ})$
$32 \sqrt{3}=2\left(\frac{\sqrt{3} r^{2}}{4}\right)$
$32 \sqrt{3}=\frac{\sqrt{3} r^{2}}{2}$

$\mathrm{r}^{2}=32 \times 2=64$
$\Rightarrow \mathrm{r}=8 \mathrm{~cm}$
\therefore Radius $=8 \mathrm{~cm}$
10. If PA and PB are tangents to a circle from an outside point P , such that $\mathrm{PA}=10 \mathrm{~cm}$ and $\angle A P B=60^{\circ}$. Find the length of chord $A B$.

Self Practice

11. The radius of the in circle of a triangle is 4 cm and the segments into which one side is divided by the point of contact are 6 cm and 8 cm . Determine the other two sides of the triangle.

(Ans: 15, 13)
Ans: $\quad \mathrm{a}=\mathrm{BC}=x+8$
$\mathrm{b}=\mathrm{AC}=6+8=14 \mathrm{~cm}$
$\mathrm{c}=\mathrm{AB}=x+6$
Semi - perimeter $=\frac{a+b+c}{2}$
$=\frac{B C+A C+A B}{2}$
$=\frac{\mathrm{x}+8+14+x+6}{2}$
$=\frac{2 x+28}{2}$
$=x+14$
Area of $\triangle \mathrm{ABC}=\sqrt{s(s-a)(s-b)(s-c)}$ on substituting we get
$=\sqrt{(x+14)(6)(x)(8)}$
$=\sqrt{(x+14)(48 x)}$
Area of $\triangle \mathrm{ABC}=$ area $\triangle \mathrm{AOB}+$ area $\mathrm{BOC}+$ area $\triangle \mathrm{AOC}$

$$
\text { area } \Delta \mathrm{AOC}=\left(\frac{1}{2} b . h\right)=\frac{1}{2} \times 4 \times 14
$$

$=28$
On substituting we get
\therefore area $\triangle \mathrm{ABC}=$ area $\triangle \mathrm{AOC}+$ area $\triangle \mathrm{BOC}+$ area $\triangle \mathrm{AOB}$
$=4 \mathrm{x}+56$
From (1) and (2)
$4 \mathrm{x}+56=\sqrt{(x+14)(48 x)}$
Simplify we get $\quad x=7$
$\therefore \mathrm{AB}=\mathrm{x}+6=7+6=13 \mathrm{~cm}$
$\therefore \mathrm{BC}=\mathrm{x}+8=7+8=15 \mathrm{~cm}$
12. A circle is inscribed in a triangle $A B C$ having sides $8 \mathrm{~cm}, 10 \mathrm{~cm}$ and 12 cm as shown in the figure. Find AD, BE and CF .
(Ans :7cm ,5cm,3cm)

Self Practice

13. Prove that the intercept of a tangent between two parallel tangents to a circle subtends a right angle at the centre.

Since $\triangle \mathrm{ADF} \cong \Delta \mathrm{DFC}$
$\angle \mathrm{ADF}=\angle \mathrm{CDF}$
$\therefore \angle \mathrm{ADC}=2 \angle \mathrm{CDF}$
Similarly we can prove $\angle \mathrm{CEB}=2 \angle \mathrm{CEF}$
Since $l \| \mathrm{m}$
$\angle \mathrm{ADC}+\angle \mathrm{CEB}=180^{\circ}$
$\Rightarrow 2 \angle \mathrm{CDF}+2 \angle \mathrm{CEF}=180^{\circ}$
$\Rightarrow \angle \mathrm{CDF}+\angle \mathrm{CEF}=90^{\circ}$

In $\triangle \mathrm{DFE}$
$\angle \mathrm{DFE}=90^{\circ}$
14. Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

Ans: Same as question No. 5
15. QR is the tangent to the circle whose centre is P . If $\mathrm{QA} \| \mathrm{RP}$ and AB is the diameter, prove that RB is a tangent to the circle.

Self Practice

