JSUNIL TUTORIAL

CH-12 AREAS REEATED TO CIRCLES

VERY SHORT ANSWER TYPE QUESTIONS

1. Tick the correct answer in the following and justify your choice :
2. Mark the correct answer in the following. If the perimeter and area of a circle are numerically equal, then the radius of the circle is :
(a) 2 unit
(b) p units
(c) 4 units
(d) 7 units.

Sol. Perimeter of a circle = area of a circle.
Suppose that ' r ' is the radius of a circle.

$$
\begin{aligned}
& 2 \pi r=p \pi 2 \\
& r=2 \text { units. }
\end{aligned}
$$

\therefore (a) 2 units is the correct answer.
2. A car has two wipers which do not overlap. Each wiper has a blade of length 25 cm sweeping through an angle of 115°. Find the total area cleaned at each sweep of the blades.
Sol.
Length of the blade of each wiper $=25 \mathrm{~cm}$
(Given)
Therefore,

$$
\begin{aligned}
& r=25 \mathrm{~cm} \\
& \theta=115^{\circ}
\end{aligned}
$$

Ar. cleaned at each sweep of the blades $=2$ (Ar. cleaned at each sweep of one blade)

$$
\begin{aligned}
& =2\binom{\pi r^{2} \theta}{360^{\circ}}=2\left(\begin{array}{cc}
22 & 25 \times 25 \times 115^{\circ} \\
7 \times & 360^{\circ}
\end{array}\right) \\
& =158125 \mathrm{~cm}^{2}
\end{aligned}
$$

3. The wheels of a car are of diameter 80 cm each. How many complete revolutions does each wheel make in 10 minutes when the car is travellng at a speed of 66 km per hour ?
Sol.
Radius of a wheel, $r=80 \mathrm{~cm}$
speed of car $=66 \mathrm{~km} / \mathrm{hrs}$

$=$| $66 \times 1000 \times 100$ |
| :---: |
| 60 | $\mathrm{~cm} /$ minutes

$=110000 \mathrm{~cm} /$ minutes

Now Circumference of wheel $=2 \pi r=2 \times \quad{ }_{7}^{22} \times 80 \mathrm{~cm}=502.86 \mathrm{~cm}$.
4. Find the area of a sector of a circle with radius 6 cm if angle of the sector is 60°.

Sol.

$$
\begin{aligned}
& \text { Area of the radius } r=6 \mathrm{~cm}, \theta=60^{\circ} \\
& \begin{array}{l}
\text { Area of sector }=\quad \begin{array}{c}
\pi r^{2} \theta \\
360^{\circ}
\end{array}=\frac{22}{7} \times \\
=\frac{132}{} \mathrm{~cm}^{2}
\end{array} \\
& \quad 360^{\circ}
\end{aligned}
$$

(Given)

JSUNIL TUTORIAL

CH-12 AREAS REEATED TO CIRCLES

SHORT ANSWER TYPE QUESTION

1. In fig., $A B C D$ is a square of side 14 cm . With centres A, B, C and D, four circles are drawn such that each circle touch externally two of the remaining three circles. Find the area of the shaded region.

Sol. In the figure, $A B C D$ is a square fo side $=14 \mathrm{~cm}$

$$
\text { Radius of each circle, } \mathrm{r}=\quad \begin{gathered}
14 \\
2
\end{gathered} \mathrm{~cm}=7 \mathrm{~cm}
$$

$$
\theta=90^{\circ}
$$

$$
\text { Ar. of four sectors }=4 \text { (Ar. of one sector) }
$$

$$
=4\binom{\pi r^{2} \theta}{360^{\circ}}=4 \times \begin{gathered}
22 \times 7 \times 90^{\circ} \\
7 \times 360^{\circ}=154 \mathrm{~cm}^{2}
\end{gathered}
$$

Ar. of four selctors $=154 \mathrm{~cm}^{2}$
Ar. of square $A B C D=(14)^{2}=(14 \times 14)=196 \mathrm{~cm}^{2}$
Therefore,

$$
\begin{aligned}
& \text { Ar. of shaded region }=\text { Ar. of square } A B C D-\text { Area of four sectors } \\
& =(196-154) \mathrm{cm}^{2}=42 \mathrm{~cm}^{2}
\end{aligned}
$$

2. The radii of two circles are 8 cm and 6 cm respectively. Find the radius of the circle having area equal to the sum of the areas of the two circles.

Sol. The radii of two circles are 8 cm and 6 cm . (Given)
Let

$$
\begin{aligned}
& r_{1}=8 \mathrm{~cm} \\
& r_{2}=6 \mathrm{~cm} \\
& \text { Therefore } A_{1}=\pi r_{1}^{2}=\pi(8)^{2}=64 \pi \mathrm{~cm}^{2} \\
& A_{2}=\pi r_{2}^{2}=\pi(6)^{2}=36 \pi \mathrm{~cm}^{2}
\end{aligned}
$$

Let r be the radius of circle.

$$
\begin{aligned}
& \text { Area of required circle }=A_{1}+A_{2} \\
& \pi r^{2}=64 \pi+36 \pi=100 \pi \\
& r^{2}=(10)^{2}=10 \mathrm{~cm} \\
& r=10 \mathrm{~cm}
\end{aligned}
$$

3. A brooch is made with silver wire in the form of a circle with diameter 35 mm . The wire is also used in making 5 diameters which divide the circle into 10 equal sectors as hsown in fig. Find:
(i) the total length of the silver wire required.
(ii) the area of each sector of the brooch.

JSUNIL TUTORIAL
 CH-12 AREAS REEATED TO CIRCLES

Sol. Given a circle with diameter $=35 \mathrm{~mm}$ and

$$
\text { radius of the brooch, } r={ }_{2}^{35} \mathrm{~mm}
$$

Suppose q be the angle made by each sector at centre.

$$
\theta=\begin{gathered}
360^{\circ} \\
\text { no of sectors }
\end{gathered}=\begin{gathered}
360^{\circ} \\
10^{\circ}
\end{gathered}=36^{\circ}
$$

(i) Total length of the silver wire required $=2 \pi r+5 \times$ (diameter of brooch)

$$
=2 \times \quad \frac{22}{7} \times \frac{35}{2}+5 \times 35=110+175=285 \mathrm{~mm}
$$

(ii) Area of each sector of the brooch $=$

$$
\begin{gathered}
\begin{array}{c}
\pi r^{2} \theta \\
360^{\circ} \\
22
\end{array} \times \frac{35}{2} \times \frac{35}{2} \times \begin{array}{c}
36^{\circ} \\
360^{\circ}
\end{array}=\frac{385}{4} \mathrm{~mm}^{2}
\end{gathered}
$$

4. From each corner of a square of side 4 cm a quadrant of a circle of a radius 1 cm is cut and also a circle of diameter 2 cm is cut as shown in fig. Find the area of the remaining portion of the square.

Sol. A square $A B C D$, of side $a=4 \mathrm{~cm} r_{1}=1 \mathrm{~cm}$ and

$$
\text { radius of circle, } r_{2}=\begin{aligned}
& 2 \\
& 2
\end{aligned} 1 \mathrm{~cm}
$$

$$
\theta=90^{\circ}
$$

Ar. of shaded region $=A r$. of square $-($ Ar. of circle at centre of square $)-4$ (Ar. of sector at corner of square)

$$
\begin{aligned}
& =(4)^{2}-\pi r^{2}-4 \quad\binom{\pi r^{2} \theta}{360^{\circ}} \\
& =(4)^{2}-\quad \begin{array}{c}
22 \\
7
\end{array} \times 1^{2}-4 \times \quad{ }^{22} \times(1)^{2} \times 70^{\circ} 360^{\circ} \\
& =16-\begin{array}{c}
22 \\
7
\end{array}-\frac{22}{7}=16-\quad 44=\begin{array}{c}
112-44 \\
7
\end{array}=\frac{68}{7} \mathrm{~cm}
\end{aligned}
$$

5. The radii of two circles are 19 cm and 9 cm respectively. Find the radius of the circle which has circumference equal to the sum of the circumferences of the two circles.

JSUNIL TUTORIAL

CH-12 AREAS REFATED TO CIRCLES

Sol. The radii of two cicles are 19 and 9 cm (Given)
Suppose
Circumference of first circle,

Circumference of 2nd circle,

$$
\begin{aligned}
& r_{1}=19 \mathrm{~cm} \\
& r_{2}=9 \mathrm{~cm} \\
& c_{1}=2 \pi r_{1} \\
& =2 \pi(19)=38 \pi \mathrm{~cm} \\
& c_{2}=2 \pi r_{2} \\
& =2 \pi(9)=18 \pi \mathrm{~cm}
\end{aligned}
$$

Now radius of required circle be rcm .
Circumference of required circle $=C_{1}+C_{2}$

$$
\begin{aligned}
& 2 \pi r=38 \pi+18 \pi=56 \pi \\
& 2 \pi=28 \mathrm{~cm} \\
& \pi=56 \\
& \pi=\begin{array}{c}
2 \\
r=28 \mathrm{~cm}
\end{array}
\end{aligned}
$$

6. On a square handkerchief nine circular designs each of radius 7 cm are made (see fig.) Find the area of the remaining portion of the handkerchief.

Sol. A square handkerchief nine circular disigns whose each of radius $r=7 \mathrm{~cm}$
Side of square ABCD, $\mathrm{a}=14 \times 3=42 \mathrm{~cm}$ (_ side $=$ sum of diameter of three circular designs) Ar. of remaining portion $=A r$. of square -9 (Ar. of circle)
7. In fig., $O A C B$ is a quadrant of a circle with centre O and radius 3.5 cm . If $O D=2 \mathrm{~cm}$, find the area of the (i) quadrant OACB (ii) shaded region.

Sol. In the given figure, OACB is a quadrant of a circle with centre O and

$$
\begin{aligned}
& r=3.5 \mathrm{~cm} \\
& O D=2 \mathrm{~cm} \\
& \theta=90^{\circ}
\end{aligned}
$$

(i) Ar. of quadrant $\mathrm{OACB}=\mathrm{Ar}$. of sector OACB

$$
=\begin{gathered}
\pi r^{2} \theta \\
360^{\circ}
\end{gathered}=\begin{gathered}
22 \\
7
\end{gathered} \times \begin{gathered}
3.5 \times 3.5 \times 90^{\circ} \\
360^{\circ}
\end{gathered}=\begin{gathered}
77 \\
8
\end{gathered} \mathrm{~cm}^{2}
$$

JSUNIL TUTORIAL

CH-12 AREAS REATED TO CIRCLES

(ii) Ar. of shaded region $=$ Area of sector $O A C B-A r$. of $\triangle B O D$

Example 8. The given figure depicts a racing track whose left and right ends arc semicircular. The distanct between the inner parallel line segments is 60 m and they are each 106 m long. If the track is 1 C m wide, find :
(i) the distance around the track along its inner edge.
(ii) the area of the track.
[NCERT]

Solution. (i) Distance around the track along its inner edge

$$
=2 \times 106 \mathrm{~m}+\text { Perimeter of two semi-circle of radius } \frac{60}{2} \mathrm{~m}
$$

$$
=212 \mathrm{~m}+2 \times \frac{22}{7} \times 30 \mathrm{~m}=212 \mathrm{~m}+\frac{1320}{7} \mathrm{~m}=\frac{2804}{7} \mathrm{~m}=400.57 \mathrm{~m}
$$

(ii) Area of the track
$=2($ area of the rectangle SRCD $)+2($ area of the semi-circular track $)$
$=2\left[106 \times 10+\frac{1}{2} \times \frac{22}{7} \times\left(40^{2}-30^{2}\right)\right] \mathrm{m}^{2}$
$=2\left[1060+\frac{1}{2} \times \frac{22}{7} \times(40+30)(40-30)\right] \mathrm{m}^{2}$
$=2\left[1060+\frac{1}{2} \times \frac{22}{7} \times 70 \times 10\right] \mathrm{m}^{2}$
$=2(1060+1100) \mathrm{m}^{2}$
$=2(2160) \mathrm{m}^{2}$
$=4320 \mathrm{~m}^{2}$ Ans.

$$
\begin{aligned}
& =\frac{\pi r^{2} \theta}{} \quad-\quad-1 \times O B \times O D \\
& =\frac{22}{7} \times{ }_{360^{\circ}}^{3.5} \times 3.5 \times 90^{\circ}-\quad{ }_{2}^{1} \times 3.5 \times 2 \\
& =\frac{22}{7} \times \frac{35}{10} \times \frac{35}{10} \times \frac{1}{4}-\begin{array}{l}
35 \\
10
\end{array} \\
& =\begin{array}{c}
77-{ }_{8}^{7} \\
2
\end{array}=\begin{array}{c}
77-28 \\
8
\end{array}={ }_{8}^{49} \mathrm{~cm}^{2}
\end{aligned}
$$

