Jsuril milionlal ACBSE Coaching for 9(athematics and Science

Class10 CBSE Test paper Chapter: Reflection and Refraction of Light - 02
Q.1. The incident ray makes an angle of 90° with the surface. Find the angle of reflection.

Ans: Laws of reflection states that the angle of incidence is equal to the angle of reflection:

If incident ray makes 90° then the angle of reflection will also be 90°
Q.2. The incident ray makes an angle of 30° with the surface of plane mirror . Find the angle of reflection.

Ans: the angle of incidence $=90^{\circ}-30^{\circ}=60^{\circ}$
The angle of incidence is equal to the angle of reflection $=60^{\circ}$
Q3. A dentist mirror (concave) has a radius of curvature of 3 cm . How far must it be placed from a small dental cavity to give virtual image of cavity that is magnified 5 times?

Ans: Given: $\mathrm{R}=2 \mathrm{f}=3 \mathrm{~cm}, \mathrm{u}=$? Focal length of the concave mirror $=-1.5 \mathrm{~cm}$,
Magnification $=-(v / u) \Rightarrow 5=\frac{-v}{u} \Rightarrow v=-5 u$,
Using mirror formula:
$\frac{1}{f}=\frac{1}{v}+\frac{1}{u}$
$\Rightarrow \frac{1}{-1.5}=\frac{1}{-5 u}+\frac{1}{u}$
$\Rightarrow \frac{1}{-1.5}=\frac{-1+5}{5 u}=\frac{4}{5 u}$
$\Rightarrow u=\frac{4 x-1.5}{5}=-1.2 \mathrm{~cm}$
Q4. An object 5 cm height is placed at a distance of 12 cm . in front of a concave mirror it forms a real image 4times large than the image calculate the distance of the image from the mirror? Ans: ho $=5 \mathrm{~cm}, \mathrm{u}=-12 \mathrm{~cm}$ Magnification, $\mathrm{m}=-4$ [given real image]

Solution : Let the image distance be v.
So, $m=-\frac{v}{u} \Rightarrow-4=-\frac{v}{-12}=>v=-48 \mathrm{~cm}$

Jsuril turainal
 ACBSE Coaching for O(athematics and Science

Thus the image is at a distance 48 cm from the mirror on the same side of the object.
Q.6. radius of curvature of a convex mirror used on a moving automobile is 2 m . A truck is coming behind it at a constant distance of 3 m calculate the position, size, nature of the image formed?

Ans: $u=-3 m, R=2 m$
Using, $\quad \frac{1}{f}=\frac{1}{v}+\frac{1}{u}$
$=>\frac{1}{1}=\frac{1}{v}-\frac{1}{3}$
$=>\frac{1}{v}=1+\frac{1}{3}$
$=>\frac{1}{v}=\frac{4}{3}=>v=\frac{3}{4}=0.75 \mathrm{~m}$
The image is at a distance 0.75 m from the mirror on the side opposite to the object.
Size of the image $=m=\frac{h i}{h o}=-\frac{v}{u}=-\frac{0.75}{-3}=0.25$
The size of the image is 0.25 times the object.
The image is virtual, diminished and erect
Q.7. An object is placed at 20 cm in front of a convex mirror of focal length 10 cm . Find the image distance and magnification.

Ans: $u=-20 \mathrm{~cm}, \mathrm{f}=10 \mathrm{~cm}$
$\frac{1}{f}=\frac{1}{v}+\frac{1}{u} \Rightarrow \frac{1}{10}=\frac{1}{v}+\frac{1}{-20}=\frac{1}{10}+\frac{1}{20}=\frac{1}{v} \Rightarrow \frac{3}{20}=\frac{1}{v} \Rightarrow v=\frac{20}{3} \Rightarrow 6.67 \mathrm{~cm}$
So image distance $v=6.67 \mathrm{~cm}$
Now magnification $\mathrm{m}=-\frac{v}{u} \quad=\frac{\frac{20}{3}}{-20}=\frac{20}{60}=\frac{1}{3}=0.33 \mathrm{~cm}$
Q.8. Write some applications of concave and convex lens

Ans: Some uses of concave lens:

1. In spectacles for eyes suffering from myopia.
2. In the lens combination of camera, telescope.

Jsuril turopial

 ACBSE Coaching for 9(athematics and Science

 ACBSE Coaching for 9(athematics and Science}
3. In door hole lenses.

Some uses of convex lens:

1. In spectacles for eyes suffering from hypermetropia.
2. In the lens combination of camera, telescope, microscope
3. It is also used as a magnifying lens.
Q.9. Object is placed at a distance 10 cm from a convex mirror of focal length 15 cm . what will be the nature the image? Ans: $u=10 \mathrm{~cm} f=15 \mathrm{~cm} v=$?

Solution: For a convex mirror
$\frac{1}{f}=\frac{1}{v}+\frac{1}{u}=\frac{1}{15}=\frac{1}{v}+\frac{1}{-10} \quad \Rightarrow \frac{1}{v}=\frac{1}{15}+\frac{1}{10} \Rightarrow \frac{1}{v}=\frac{1}{6} \Rightarrow v=6 \mathrm{~cm}$
So a virtual and erect image will be formed at a distance of 6 cm from the optical center of the mirror on the right hand side of the mirror.
Q.10. A concave mirror form the image of the sun at 18 cm on a screen. When an object is placed at 24 cm from the pole of the mirror, the image forms on a screen. Without disturbing the position of the object, the mirror is moved by 3 cm towards the object. By what distance and in what direction, the screen is to be moved to catch the image on it again?

Ans: For Sun, $u=\infty$ (infinity) , v = - 18 cm (concave mirror)
$\frac{1}{f}=\frac{1}{v}+\frac{1}{f} \Rightarrow \frac{1}{f}=\frac{1}{-18}+\infty \quad \Rightarrow \mathrm{f}=-18 \mathrm{~cm}$
Now, object is placed at $24 \mathrm{~cm}, \mathrm{u}=-24 \mathrm{~cm}, \mathrm{f}=-18 \mathrm{~cm}$
$\frac{1}{f}=\frac{1}{v}+\frac{1}{f} \Rightarrow \frac{1}{-18}=\frac{1}{v}+\frac{1}{-24} \Rightarrow \frac{1}{-18}+\frac{1}{24}=\frac{1}{v} \Rightarrow v=-72 \mathrm{~cm}$
So, screen is placed 72 cm front of mirror.
Now mirror is displaced 3 cm towards object,
So, $u=-21 \mathrm{~cm}$ and screen distance $=72-3=69 \mathrm{~cm}$ (with negative sign)
Again by applying (1), and putting the values $u=-21 \mathrm{~cm}$ and $\mathrm{f}=-18 \mathrm{~cm}$ $\frac{1}{f}=\frac{1}{v}+\frac{1}{f} \Rightarrow \frac{1}{-18}=\frac{1}{v}+\frac{1}{-21} \Rightarrow \frac{1}{-18}+\frac{1}{21}=\frac{1}{v} \Rightarrow v=-126 \mathrm{~cm}$

So, the screen has to move a distance of $126-69=57 \mathrm{~cm}$ away from the mirror.

Jsuril turainal

 ACBSE Coaching for Ohathematics and Science

 ACBSE Coaching for Ohathematics and Science}
Q.11. A convex mirror of focal length 20 cm forms image of magnification $\frac{3}{5}$ for one position of the object. The object is shifted by $\frac{16}{3} \mathrm{~cm}$ towards the mirror. By what distance and what direction the image will move .
$\mathrm{f}=20 \mathrm{~cm}, \mathrm{~m}=\frac{3}{5}=-\frac{v}{u} \Rightarrow \mathrm{u}=-\frac{5 v}{3}$
$\frac{1}{f}=\frac{1}{v}+\frac{1}{u}$
$\Rightarrow \frac{1}{20}=\frac{1}{v}+\frac{3}{-5 v}$
$\Rightarrow \frac{1}{20}=\frac{5-3}{5 v}$
$\Rightarrow \frac{1}{20}=\frac{2}{5 \mathrm{v}}$
$\Rightarrow \mathrm{v}=\frac{40}{5}=8 \mathrm{~cm}$
$\mathrm{u}=\frac{-5 \times 8}{3}=-\frac{40}{3} \mathrm{~cm}$
Now, the object is shifted by $\frac{16}{3} \mathrm{~cm}$ towards the mirror
New object distance $=u=-\left(\frac{40}{3}-\frac{16}{3}\right)=-8 \mathrm{~cm}$
$\frac{1}{f}=\frac{1}{v}+\frac{1}{u}$
$\Rightarrow \frac{1}{20}=\frac{1}{v}+\frac{3}{-8}$
$\Rightarrow \frac{1}{20}+\frac{1}{8}=\frac{1}{v}=\frac{2+5}{40}$
$\Rightarrow \quad \frac{1}{v}=\frac{7}{40}$
$\Rightarrow v=\frac{40}{7}=5.71 \mathrm{~cm}$
Image will move towards mirror by 2.29 cm 1

