Q1. A copper wire, 3 mm in diameter, is wound about a cylinder whose length is 12 cm , and diameter 10 cm , so as to cover the curved surface of the cylinder. Find the length and mass of the wire, assuming the density of copper to be $8.88 \mathrm{~g} \mathrm{per} \mathrm{cm}^{3}$.

It can be observed that 1 round of wire will cover 3 mm height of cylinder.
Number of rounds $=\frac{\text { Height of cylinder }}{\text { Diameter of wire }}$

$$
=\frac{12}{0.3}=40 \text { rounds }
$$

Length of wire required in 1 round = Circumference of base of cylinder
$=2 \pi r=2 \pi \times 5=10 \pi$

Length of wire in 40 rounds $=40 \times 10 \pi$
$=\frac{400 \times 22}{7}=\frac{8800}{7}=1257.14 \mathrm{~cm}=12.57 \mathrm{~m}$
Radius of wire
$=\frac{0.3}{2}=0.15 \mathrm{~cm}$
Volume of wire $=$ Area of cross-section of wire \times Length of wire
$=\pi(0.15)^{2} \times 1257.14=88.898 \mathrm{~cm}^{3}$
Mass $=$ Volume \times Density
$=88.898 \times 8.88=789.41 \mathrm{gm}$
Q2. A right triangle whose sides are 3 cm and 4 cm (other than hypotenuse) is made to revolve about its hypotenuse. Find the volume and surface area of the double cone so formed. (Choose value of π as found appropriate.

The double cone so formed by revolving this right-angled triangle ABC about its hypotenuse is shown in the figure.

Hypotenuse $\mathrm{AC}=\sqrt{3^{2}+4^{2}}=\sqrt{25}=5 \mathrm{~cm}$
Area of $\triangle A B C=\frac{1}{2} \times A B \times A C$
$\frac{1}{2} \times \mathrm{AC} \times \mathrm{OB}=\frac{1}{2} \times 4 \times 3$
$\frac{1}{2} \times 5 \times \mathrm{OB}=6$
$\mathrm{OB}=\frac{12}{5}=2.4 \mathrm{~cm}$

Volume of double cone $=$ Volume of cone $1+$ Volume of cone 2
$=\frac{1}{3} \pi r^{2} h_{1}+\frac{1}{3} \pi r^{2} h_{2}$
$=\frac{1}{3} \pi r^{2}\left(h_{1}+h_{2}\right)=\frac{1}{3} \pi r^{2}(\mathrm{OA}+\mathrm{OC})$
$=\frac{1}{3} \times 3.14 \times(2.4)^{2}(5)$
$=30.14 \mathrm{~cm}^{3}$

Surface area of double cone $=$ Surface area of cone $1+$ Surface area of cone 2
$=\pi r l_{1}+\pi r r_{2}=\pi r[4+3]=3.14 \times 2.4 \times 7=52.75 \mathrm{~cm}^{2}$
Q.03. A cistern, internally measuring $150 \mathrm{~cm} \times 120 \mathrm{~cm} \times 110 \mathrm{~cm}$, has $129600 \mathrm{~cm}^{3}$ of water in it. Porous bricks are placed in the water until the cistern is full to the brim. Each brick absorbs one-seventeenth of its own volume
of water. How many bricks can be put in without overflowing the water, each brick being $22.5 \mathrm{~cm} \times 7.5 \mathrm{~cm} \times 6.5$ cm ?

Solution : Volume of cistern $=150 \times 120 \times 110=1980000 \mathrm{~cm}^{3}$
Volume to be filled in cistern $=1980000-129600 \quad=1850400 \mathrm{~cm}^{3}$
Let n numbers of porous bricks were placed in the cistern.
Volume of n bricks $=n \times 22.5 \times 7.5 \times 6.5=1096.875 n$
As each brick absorbs one-seventeenth of its volume, therefore, volume absorbed by these bricks $=\frac{n}{17}(1096.875)$

$$
1850400+\frac{n}{17}(1096.875)=(1096.875) n
$$

$1850400=\frac{16 n}{17}(1096.875)$

$$
n=1792.41
$$

Therefore, 1792 bricks were placed in the cistern.
Q.04. An oil funnel made of tin sheet consists of a 10 cm long cylindrical portion attached to a frustum of a cone. If the total height is 22 cm , diameter of the cylindrical portion is 8 cm and the diameter of the top of the funnel is 18 cm , find the area of the tin sheet required to make the funnel (see the given figure).

Radius $\left(r_{1}\right)$ of upper circular end of frustum part $=\frac{18}{2}=9 \mathrm{~cm}$
Radius $\left(r_{2}\right)$ of lower circular end of frustum part $=$ Radius of circular end of cylindrical part
$=\frac{8}{2}=4 \mathrm{~cm}$
Height $\left(h_{1}\right)$ of frustum part $=22-10=12 \mathrm{~cm} \quad$ Height $\left(h_{2}\right)$ of cylindrical part $=10 \mathrm{~cm}$
Slant height (Λ of frustum part $=\sqrt{\left(r_{1}-r_{2}\right)^{2}+h^{2}}=\sqrt{(9-4)^{2}+(12)^{2}}=13 \mathrm{~cm}$

Area of tin sheet required $=$ CSA of frustum part + CSA of cylindrical part
$=\pi\left(r_{1}+r_{2}\right) l+2 \pi r_{2} h_{2}$
$=\frac{22}{7} \times(9+4) \times 13+2 \times \frac{22}{7} \times 4 \times 10$
$=\frac{22}{7}[169+80]=\frac{22 \times 249}{7}$
$=782 \frac{4}{7} \mathrm{~cm}^{2}$
Q. 05 Derive the formula for the curved surface area and total surface area of the frustum of cone.

Let ABC be a cone. A frustum DECB is cut by a plane parallel to its base. Let r_{1} and r_{2} be the radii of the ends of the frustum of the cone and h be the height of the frustum of the cone.

In $\triangle A B G$ and $\triangle A D F, D F| | B G$
$\triangle \mathrm{ABG} \approx \triangle \mathrm{ADF}$
$\frac{\mathrm{DF}}{\mathrm{BG}}=\frac{\mathrm{AF}}{\mathrm{AG}}=\frac{\mathrm{AD}}{\mathrm{AB}}$
$\frac{r_{2}}{r_{1}}=\frac{h_{1}-h}{h_{1}}=\frac{l_{1}-l}{l_{1}}$
$\frac{r_{2}}{r_{1}}=1-\frac{h}{h_{1}}=1-\frac{l}{l_{1}}$
$1-\frac{l}{l_{1}}=\frac{r_{2}}{r_{1}}$
$\frac{l}{l_{1}}=1-\frac{r_{2}}{r_{1}}=\frac{r_{1}-r_{2}}{r_{1}}$
$\frac{l_{1}}{l}=\frac{r_{1}}{r_{1}-r_{2}}$
$l_{1}=\frac{r_{1} l}{r_{1}-r_{2}}$

CSA of frustum DECB = CSA of cone $A B C-C S A$ cone $A D E$
$=\pi r_{1} l_{1}-\pi r_{2}\left(l_{1}-l\right)$
$=\pi r_{1}\left(\frac{l r_{1}}{r_{1}-r_{2}}\right)-\pi r_{2}\left[\frac{r_{1} l}{r_{1}-r_{2}}-l\right] \quad=\frac{\pi r_{1}^{2} l}{r_{1}-r_{2}}-\frac{\pi r_{2}^{2} l}{r_{1}-r_{2}}$
$=\frac{\pi r_{1}^{2} l}{r_{1}-r_{2}}-\pi r_{2}\left(\frac{r_{1} l-r_{1} l+r_{2} l}{r_{1}-r_{2}}\right) \quad \rightarrow \quad=\pi l\left[\frac{r_{1}^{2}-r_{2}^{2}}{r_{1}-r_{2}}\right]$

CSA of frustum $=\pi\left(r_{1}+r_{2}\right) l$

Total surface area of frustum $=$ CSA of frustum + Area of upper circular end + Area of lower circular end
$=\pi\left(r_{1}+r_{2}\right) l+\pi r_{2}^{2}+\pi r_{1}^{2}$
$=\pi\left[\left(r_{1}+r_{2}\right) l+r_{1}^{2}+r_{2}^{2}\right]$
Q.06: Derive the formula for the volume of the frustum of a cone.

Solution: Let $A B C$ be a cone. A frustum DECB is cut by a plane parallel to its base.
Let r_{1} and r_{2} be the radii of the ends of the frustum of the cone and h be the height of the frustum of the cone.
In $\triangle A B G$ and $\triangle A D F, D F \| B G$
$\triangle \mathrm{ABG} \approx \triangle \mathrm{ADF}$

$$
1-\frac{h}{h_{1}}=\frac{r_{2}}{r_{1}}
$$

$\frac{\mathrm{DF}}{\mathrm{BG}}=\frac{\mathrm{AF}}{\mathrm{AG}}=\frac{\mathrm{AD}}{\mathrm{AB}}$

$$
\frac{h}{h_{1}}=1-\frac{r_{2}}{r_{1}}=\frac{r_{1}-r_{2}}{r_{1}}
$$

$\frac{r_{2}}{r_{1}}=\frac{h_{1}-h}{h_{1}}=\frac{l_{1}-l}{l_{1}}$
$\frac{h_{1}}{h}=\frac{r_{1}}{r_{1}-r_{2}}$
$\frac{r_{2}}{r_{1}}=1-\frac{h}{h_{1}}=1-\frac{l}{l_{1}}$
$\rightarrow \quad h_{1}=\frac{r_{1} h}{r_{1}-r_{2}}$

Volume of frustum of cone $=$ Volume of cone $A B C-$ Volume of cone ADE

$$
\begin{aligned}
& =\frac{1}{3} \pi r_{1}^{2} h_{1}-\frac{1}{3} \pi r_{2}^{2}\left(h_{1}-h\right) \\
& =\frac{\pi}{3}\left[r_{1}^{2} h_{1}-r_{2}^{2}\left(h_{1}-h\right)\right] \\
& =\frac{\pi}{3}\left[r_{1}^{2}\left(\frac{h r_{1}}{r_{1}-r_{2}}\right)-r_{2}^{2}\left(\frac{h r_{1}}{r_{1}-r_{2}}-h\right)\right] \\
& =\frac{\pi}{3}\left[\left(\frac{h r_{1}^{3}}{r_{1}-r_{2}}\right)-r_{2}^{2}\left(\frac{h r_{1}-h r_{1}+h r_{2}}{r_{1}-r_{2}}\right)\right] \\
& =\frac{\pi}{3}\left[\frac{h r_{1}^{3}}{r_{1}-r_{2}}-\frac{h r_{2}^{3}}{r_{1}-r_{2}}\right] \\
& =\frac{\pi}{3} h\left[\frac{r_{1}^{3}-r_{2}^{3}}{r_{1}-r_{2}}\right] \\
& =\frac{\pi}{3} h\left[\frac{\left(r_{1}-r_{2}\right)\left(r_{1}^{2}+r_{2}^{2}+r_{1} r_{2}\right)}{r_{1}-r_{2}}\right] \\
& =\frac{1}{3} \pi h\left[r_{1}^{2}+r_{2}^{2}+r_{1} r_{2}\right]
\end{aligned}
$$

