DELHI PUBLIC SCHOOL, CHANDIGARH

Summative Assessment-I, Sample Paper
Class : X, Subject : Maths

General Instructions:

(i) All questions are compulsory.
(ii) The question paper consists of 31 questions divided into four sections A, B, C and D. Section A comprises of 4 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 10 questions of 3 marks each and section D comprises of 11 questions of 4 marks each.
(iii) Use of calculator is not permitted.

SECTION - A

Question humbers to 4 carry one markeach.

1. $\operatorname{IICAF}(54,336)-3024$, then $\operatorname{InOPAC}(54,336)$
 thangles.
2. KLnothe Value of $5 \tan \mathrm{~A}-5 \sec \mathrm{~A}$
3. TIfrean $=24$, median 26 , then thodmode

Section-B

Questions numbers Sto 10 carrytuobmarks each.
5. 世台what value of pwill the following:system of equations have no solubon

$$
(2 p \text {, } \mathbf{x} \text {. } \mathbf{p} \text {, } 1) y=2 p+\text { ب }+3 x-1=0
$$

6. If tan $2 A=\cot \left(A-18^{\circ}\right)$, where $2 A$ is an acute angle, find the value of A :
7. Is $7 \times 11 \times 13+13$ a composite number? J ustify your answer.
8. In the given figures, find the measure of $\angle \mathrm{X}$.

9. If α and $\frac{1}{\alpha}$ are zeros of polynomial $4 x^{2}-2 x+(k-4)$. Find k.
10. The following distribution gives the daily income of 50 workers of a factory:

Daily Income in (₹)	$100-120$	$120-140$	$140-160$	$160-180$	$180-200$
Number of workers	12	14	8	6	10

Write the above distribution as "less than type" cumulative frequency distribution.

Section-C

Questions numbers $\mathbf{1 1}$ to $\mathbf{2 0}$ carry three marks each.

11. The sum of a two digit number and the number obtained by reversing the digits is 66. If the digits differ by 2 , find the number.
12. If α and β are the zeros of polynomial $x^{2}-2 x-8$ then form a quadratic polynomial whose zeros are 3α and 3β.
13. Prove that: $\frac{\cot A-\cos A}{\cot A+\cos A}=\frac{\operatorname{cosec} A-1}{\operatorname{cosec} A+1}$.
14. Evaluate: $\sin A \cos A-\frac{\sin A \cos (90-A) \cos A}{\sec (90-A)}-\frac{\cos A \sin (90-A) \sin A}{\operatorname{cosec}(90-A)}$
15. Prove that: $\frac{\sin \theta-2 \sin ^{3} \theta}{2 \cos ^{3} \theta-\cos \theta}=\tan \theta$
16. In the given figure, $\angle \mathrm{ACB}=90^{\circ}$ and $\mathrm{CD} \perp \mathrm{AB}$. Prove that $\frac{\mathrm{BC}^{2}}{\mathrm{AC}^{2}}=\frac{\mathrm{BD}}{\mathrm{AB}}$.

17. Prove that $6-\sqrt{5}$ is an irrational number.
18. The given distribution shows the number of runs scored by some top Batsman of the world in one day international cricket matches :

Runs scored	$3000-$ 4000	$4000-$ 5000	$5000-$ 6000	$6000-$ 7000	$7000-$ 8000	$8000-$ 9000	$9000-$ 10000	$10000-$ 11000
Number of batsman	4	18	9	7	6	3	1	1

Find the mode of the data.
20. If the mean of given data is 50 . Find the value of p.

Class-Interval	$0-20$	$20-40$	$40-60$	$60-80$	$80-100$
Frequency	17	28	32	p	19

Section-D

Questions numbers 21 to 31 carry four marks each

21. Prove that: $\frac{1-\cos A+\sin A}{\sin A+\cos A-1}=\frac{1+\sin A}{\cos A}$
22. If two zeros of the polynomial $x^{4}-6 x^{3}-26 x^{2}+138 x-35$ are $2 \pm \sqrt{3}$, find other zeros.
23. Draw the graphs of the equations $x-y+1=0$ and $3 x+2 y-12=0$. Find the co-ordinate of the vertices of triangle formed by these lines and x - axis, shade the region. Also find the area of triangle.
24. If the median of the distribution given below is 28.5 . Find x and y.

Class-interval	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	Total
Frequency	5	x	20	15	y	5	60

25. Use Euclid's division lemma to show that the cube of any positive integer is of the form $9 m, 9 m+1$ or $9 m+8$.
26. Two points A and B are 90 km apart from each other on a highway. A car starts from A and another from B at the same time. If they go in the same direction they meet in 9

27. Rpove that ha pighe angle trạngle the spuape of the hypotehuse equartothesum of the squares of other two sides.

28. The following tabe geves productonotwheatof toof farms of aphage

Poduction (in Kgoba)	$50-55$	5560	6066	65-70'	70\%	75880
Aumber of farms	2	8	12	24	38	16

Change the distribution to 'mope than type' distribution and draw its ogive apodfid median
30.

31. In the given figure, $A B||P Q|| C D, A B=x$ units, $C D=$ y units and $P Q=z$ units, prove that, $\frac{1}{x}+\frac{1}{y}=\frac{1}{z}$

