

DELHI PUBLIC SCHOOL, CHANDIGARH

Summative Assessment-I, Sample Paper Class : X, Subject : Maths

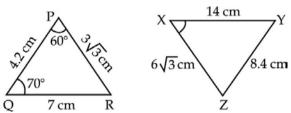
Time : 3 hours

MM : 90

General Instructions:

- (i) All questions are compulsory.
- (ii) The question paper consists of 31 questions divided into four sections A,B,C and D. Section A comprises of 4 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 10 questions of 3 marks each and section D comprises of 11 questions of 4 marks each.
- (iii) Use of calculator is not permitted.

SECTION – A


Question numbers 1 to 4 carry one mark each.

- 1. If LCM (54,336) = 3024, then find HCF (54,336).
- 2. If the sides of two similar triangles are in ratio 4.9, then find ratio of area of these triangles.
- 3. Find the Value of 5 $\tan^2 A 5 \sec^2 A$
- 4. If mean = 24, median = 26, then find mode.

Section – B

Questions numbers 5 to 10 carry two marks each.

- 5. For what value of p will the following system of equations have no solution (2p-1)x + (p-1)y = 2p + 1; y + 3x - 1 = 0
- 6. If $\tan 2A = \cot (A 18^\circ)$, where 2A is an acute angle, find the value of A
- 7. Is $7 \times 11 \times 13 + 13$ a composite number? Justify your answer.
- 8. In the given figures, find the measure of $\angle X$.

- 9. If α and $\frac{1}{\alpha}$ are zeros of polynomial $4x^2 2x + (k 4)$. Find k.
- 10. The following distribution gives the daily income of 50 workers of a factory:

Daily Income in (₹)	100-120	120-140	140-160	160-180	180-200
Number of workers	12	14	8	6	10

Write the above distribution as "less than type" cumulative frequency distribution.

Section-C

Questions numbers 11 to 20 carry three marks each.

- 11. The sum of a two digit number and the number obtained by reversing the digits is66. If the digits differ by 2, find the number.
- 12. If α and β are the zeros of polynomial $x^2 2x 8$ then form a quadratic polynomial whose zeros are 3α and 3β .
- 13. Prove that: $\frac{\cot A \cos A}{\cot A + \cos A} = \frac{\csc A 1}{\csc A + 1}$.
- 14. Evaluate: $\sin A \cos A \frac{\sin A \cos(90 A) \cos A}{\sec(90 A)} \frac{\cos A \sin(90 A) \sin A}{\csc(90 A)}$

15. Prove that:
$$\frac{\sin \theta - 2 \sin^3 \theta}{2 \cos^3 \theta - \cos \theta} = \tan \theta$$

16. In the given figure, $\angle ACB = 90^{\circ}$ and $CD \perp AB$. Prove that $\frac{BC^2}{AC^2} = \frac{BD}{AD}$. A \therefore D B17. In the given figure, if $AD \perp BC$, prove that $AB^2 + CD^2 = BD^2 + AC^2$.

- 18. Prove that $6 \sqrt{5}$ is an irrational number.
- 19. The given distribution shows the number of runs scored by some top Batsman of the world in one day international cricket matches :

Runs	3000-	4000-	5000-	6000-	7000-	8000-	9000-	10000-
scored	4000	5000	6000	7000	8000	9000	10000	11000
Number of	4	18	9	7	6	3	1	1
batsman								

Find the mode of the data.

20. If the mean of given data is 50. Find the value of p.

	5				
Class-Interv	al 0-2	0 20-4	0 40-60	60-80	80-100
Frequency	17	28	32	р	19

Section-D

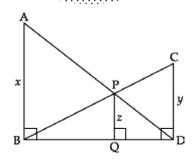
Questions numbers 21 to 31 carry four marks each

- 21. Prove that: $\frac{1 \cos A + \sin A}{\sin A + \cos A 1} = \frac{1 + \sin A}{\cos A}$
- 22. If two zeros of the polynomial $x^4 6x^3 26x^2 + 138x 35$ are $2 \pm \sqrt{3}$, find other zeros.
- 23. Draw the graphs of the equations x y + 1 = 0 and 3x + 2y 12 = 0. Find the co-ordinate of the vertices of triangle formed by these lines and x axis, shade the region. Also find the area of triangle.
- 24. If the median of the distribution given below is 28.5. Find x and y.

	3				J			
Class-interval	0-10	10-20	20-30	30-40	40-50	50-60	Total	
Frequency	5	Х	20	15	у	5	60	

- 25. Use Euclid's division lemma to show that the cube of any positive integer is of the form 9m, 9m + 1 or 9m + 8.
- 26. Two points A and B are 90 km apart from each other on a highway. A car starts from A and another from B at the same time. If they go in the same direction, they meet in 9 hours and if they go in the opposite directions, they meet in $1\frac{2}{7}$ hours, find their speeds.
- 27. Prove that in a right angle triangle, the square of the hypotenuse is equal to the sum of the squares of other two sides.

28. If
$$\sec \theta = x + \frac{1}{2}$$
, then prove that $\sec \theta + \tan \theta = 2x$ or


2x -4x 29. The following table gives production of wheat of 100 farms of a village Production (in kg/ha) 50 - 55 55 - 60 60 - 65 65 - 70 70 - 75 75 - 80 8 12 2 24 38 Number of farms 16 Change the distribution to 'more than type' distribution and draw its ogive and find

median

30. Evaluate
$$\frac{\sec^2(90-\theta) - \cot^2\theta}{2(\sin^2 25^\circ + \sin^2 65^\circ)} + 2\cos^2 60^\circ \tan^2 28^\circ \tan^2 62^\circ}{\sin 30^\circ \cos 60^\circ}$$

31. In the given figure, AB || PQ || CD, AB = x units, CD =

y units and PQ = z units, prove that, $\frac{1}{x} + \frac{1}{y} = \frac{1}{z}$

