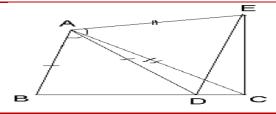

## Comprehensive Test Series IX Chapter: Triangle and Lines and Angles

Q.1 Line segment AB is parallel to another line segment CD. O is the midpoint of AD Show that (i)  $\triangle$ AOB  $\cong$   $\triangle$ DOC (ii) O is also the midpoint of BC.

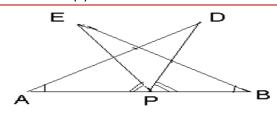
Q. 8. In  $\_$  ABC,  $\angle$ B > $\angle$ C. If AM is the bisector of  $\angle$ BAC and AN  $\bot$  BC, prove that  $\angle$ MAN =  $\frac{1}{2}(\angle$ B - $\angle$ C)




Q.9. O is a point in the interior of  $\triangle$  ABC, prove AB + AC > OB + OC

Q.2. Line I is the bisector of an angle  $\angle A$  and B is any point on I. BP and BQ are perpendiculars from B to the arms of  $\angle A$ . Show that (i)  $\triangle APB \cong \triangle AQB$  (ii) BP = BQ or B is equidistant from the arms of < A.

Q.3 In Fig. AC = AE, AB = AD and  $\angle$ BAD =  $\angle$ EAC. Show that BC = DE.


Q.10. AD is a median to side BC of  $\triangle$  ABC. Prove that AB + AC > 2 AD.

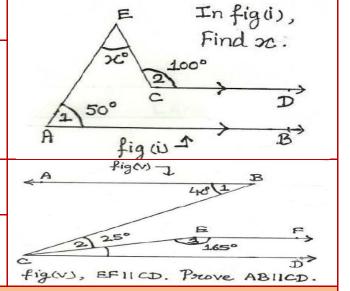


Q.11. Show that the difference between any two sides of a triangle is less than the third side. OR, In  $\triangle$ ABC, if AD is the bisector of <A, show that AB > BD.

Q.4. AB is a line segment and P is its mid-point. D and E are points on the same side of AB such that  $\angle$ BAD =  $\angle$ ABE and  $\angle$ EPA =  $\angle$ DPB. Show that (i)  $\triangle$  DAP  $\cong$   $\triangle$  EBP (ii) AB = BE

Q.12.  $\triangle$  ABC is an isosceles triangle in which AB = AC. Side BA is produced to D such that AD = AB. Show that BCD is a right angle.




Q.13. In a right triangle if one of the acute angle is double the other then prove that Hypogenous is double the smallest side.

Q. 5. In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that DM = CM. Point D is joined to point B. Show that (i)  $\triangle$ AMC  $\cong$   $\triangle$ BMD (ii)  $\angle$ DBC is a right angle

(i)  $\triangle$ AMC  $\cong$   $\triangle$ BMD (ii)  $\angle$ DBC is a right angle (iii)  $\triangle$  DBC  $\cong$   $\triangle$ ACB (iv) CM = AB

Q . 6. In  $\triangle$  ABC, the bisectors of  $\angle$ B and  $\angle$ C intersect each other at a point 0. Prove that  $\angle$ BOC =  $90^{\circ} + \frac{1}{2}\angle$ A.

Q. 7 In  $\_$  ABC, the sides AB and AC are produced to P and Q respectively. Bisectors of  $\angle$ PBC and  $\angle$ QCB intersect at point 0. Prove that  $\angle$ BOC = 90° -  $\frac{1}{2}$  $\angle$ A.



Free Education Online: http://jsuniltutorial.weebly.com/