Exercise 9.1 # Question 1: Which of the following figures lie on the same base and between the same parallels. In such a case, write the common base and the two parallels. Answer: Yes. It can be observed that trapezium ABCD and triangle PCD have a common base CD and these are lying between the same parallel lines AB and CD. (ii) No. It can be observed that parallelogram PQRS and trapezium MNRS have a common base RS. However, their vertices, (i.e., opposite to the common base) P, Q of parallelogram and M, N of trapezium, are not lying on the same line. (iii) Yes. It can be observed that parallelogram PQRS and triangle TQR have a common base QR and they are lying between the same parallel lines PS and QR. (iv) No. It can be observed that parallelogram ABCD and triangle PQR are lying between same parallel lines AD and BC. However, these do not have any common base. (v) Yes. It can be observed that parallelogram ABCD and parallelogram APQD have a common base AD and these are lying between the same parallel lines AD and BQ. (vi) No. It can be observed that parallelogram PBCS and PQRS are lying on the same base PS. However, these do not lie between the same parallel lines. ### Exercise 9.2 ## Question 1: In the given figure, ABCD is parallelogram, AE \perp DC and CF \perp AD. If AB = 16 cm, AE = 8 cm and CF = 10 cm, find AD. #### Answer: In parallelogram ABCD, CD = AB = 16 cm [Opposite sides of a parallelogram are equal] We know that Area of a parallelogram = Base \times Corresponding altitude Area of parallelogram ABCD = CD \times AE = AD \times CF $16 \text{ cm} \times 8 \text{ cm} = AD \times 10 \text{ cm}$ $$AD = \frac{16 \times 8}{10}$$ cm = 12.8 cm Thus, the length of AD is 12.8 cm. ## **Question 2:** If E, F, G and H are respectively the mid-points of the sides of a parallelogram ABCD show that $$ar (EFGH) = \frac{1}{2} ar (ABCD)$$ Answer: Let us join HF. In parallelogram ABCD, AD = BC and AD || BC (Opposite sides of a parallelogram are equal and parallel) AB = CD (Opposite sides of a parallelogram are equal) $$\Rightarrow \frac{1}{2}AD = \frac{1}{2}BC$$ and AH || BF \Rightarrow AH = BF and AH || BF (: H and F are the mid-points of AD and BC) Therefore, ABFH is a parallelogram. Since ΔHEF and parallelogram ABFH are on the same base HF and between the same parallel lines AB and HF, $$\therefore$$ Area (ΔHEF) = $\frac{1}{2}$ Area (ABFH) ... (1) Similarly, it can be proved that Area ($$\Delta$$ HGF) = $\frac{1}{2}$ Area (HDCF) ... (2) On adding equations (1) and (2), we obtain Area ($$\Delta$$ HEF) + Area (Δ HGF) = $\frac{1}{2}$ Area (ABFH) + $\frac{1}{2}$ Area (HDCF) = $\frac{1}{2}$ [Area (ABFH) + Area (HDCF)] $$\Rightarrow$$ Area (EFGH) = $\frac{1}{2}$ Area (ABCD) ## Question 3: P and Q are any two points lying on the sides DC and AD respectively of a parallelogram ABCD. Show that ar (APB) = ar(BQC). Answer: It can be observed that ΔBQC and parallelogram ABCD lie on the same base BC and these are between the same parallel lines AD and BC. ∴Area (ΔBQC) = $$\frac{1}{2}$$ Area (ABCD) ... (1) Similarly, ΔAPB and parallelogram ABCD lie on the same base AB and between the same parallel lines AB and DC. $$\therefore$$ Area (ΔAPB) = $\frac{1}{2}$ Area (ABCD) ... (2) From equation (1) and (2), we obtain Area (\triangle BQC) = Area (\triangle APB) ## Question 4: In the given figure, P is a point in the interior of a parallelogram ABCD. Show that (i) ar (APB) + ar (PCD) = $$\frac{1}{2}$$ ar (ABCD) (ii) $$ar(APD) + ar(PBC) = ar(APB) + ar(PCD)$$ [Hint: Through. P, draw a line parallel to AB] Answer: (i) Let us draw a line segment EF, passing through point P and parallel to line segment AB. In parallelogram ABCD, AB || EF (By construction) ... (1) ABCD is a parallelogram. ∴ AD || BC (Opposite sides of a parallelogram) ⇒ AE || BF ... (2) From equations (1) and (2), we obtain AB || EF and AE || BF Therefore, quadrilateral ABFE is a parallelogram. It can be observed that \triangle APB and parallelogram ABFE are lying on the same base AB and between the same parallel lines AB and EF. $$\therefore$$ Area (ΔAPB) = $\frac{1}{2}$ Area (ABFE) ... (3) Similarly, for ΔPCD and parallelogram EFCD, Area ($$\triangle PCD$$) = $\frac{1}{2}$ Area (EFCD) ... (4) Adding equations (3) and (4), we obtain Area ($$\triangle APB$$) + Area ($\triangle PCD$) = $\frac{1}{2}$ [Area (ABFE) + Area (EFCD)] Area ($$\triangle APB$$) + Area ($\triangle PCD$) = $\frac{1}{2}$ Area (ABCD) ... (5) (ii) Let us draw a line segment MN, passing through point P and parallel to line segment AD. In parallelogram ABCD, MN || AD (By construction) ... (6) ABCD is a parallelogram. ∴ AB || DC (Opposite sides of a parallelogram) $$\Rightarrow$$ AM || DN ... (7) From equations (6) and (7), we obtain MN || AD and AM || DN Therefore, quadrilateral AMND is a parallelogram. It can be observed that \triangle APD and parallelogram AMND are lying on the same base AD and between the same parallel lines AD and MN. $$\therefore$$ Area (ΔAPD) = $\frac{1}{2}$ Area (AMND) ... (8) Similarly, for ΔPCB and parallelogram MNCB, Area ($$\triangle PCB$$) = $\frac{1}{2}$ Area (MNCB) ... (9) Adding equations (8) and (9), we obtain Area ($$\triangle APD$$) + Area ($\triangle PCB$) = $\frac{1}{2}$ [Area (AMND) + Area (MNCB)] Area ($\triangle APD$) + Area ($\triangle PCB$) = $\frac{1}{2}$ Area (ABCD) ... (10) On comparing equations (5) and (10), we obtain Area ($$\triangle$$ APD) + Area (\triangle PBC) = Area (\triangle APB) + Area (\triangle PCD) ## Question 5: In the given figure, PQRS and ABRS are parallelograms and X is any point on side BR. Show that (i) $$ar(PQRS) = ar(ABRS)$$ (ii) ar $$(\Delta PXS) = \frac{1}{2}$$ ar $(PQRS)$ #### Answer: - (i) It can be observed that parallelogram PQRS and ABRS lie on the same base SR and also, these lie in between the same parallel lines SR and PB. - \therefore Area (PQRS) = Area (ABRS) ... (1) - (ii) Consider Δ AXS and parallelogram ABRS. As these lie on the same base and are between the same parallel lines AS and BR, $$\therefore$$ Area (ΔAXS) = $\frac{1}{2}$ Area (ABRS) ... (2) From equations (1) and (2), we obtain Area ($$\Delta$$ AXS) = $\frac{1}{2}$ Area (PQRS) #### **Question 6:** A farmer was having a field in the form of a parallelogram PQRS. She took any point A on RS and joined it to points P and Q. In how many parts the field is divided? What are the shapes of these parts? The farmer wants to sow wheat and pulses in equal portions of the field separately. How should she do it? #### Answer: From the figure, it can be observed that point A divides the field into three parts. These parts are triangular in shape $-\Delta PSA$, ΔPAQ , and ΔQRA Area of $\triangle PSA$ + Area of $\triangle PAQ$ + Area of $\triangle QRA$ = Area of $\parallel gm$ PQRS ... (1) We know that if a parallelogram and a triangle are on the same base and between the same parallels, then the area of the triangle is half the area of the parallelogram. $$\therefore \text{ Area (ΔPAQ)} = \frac{1}{2} \text{ Area (PQRS)} \dots (2)$$ From equations (1) and (2), we obtain Area ($$\triangle$$ PSA) + Area (\triangle QRA) = $\frac{1}{2}$ Area (PQRS) ... (3) Clearly, it can be observed that the farmer must sow wheat in triangular part PAQ and pulses in other two triangular parts PSA and QRA or wheat in triangular parts PSA and QRA and pulses in triangular parts PAQ. #### Exercise 9.3 ## Question 1: In the given figure, E is any point on median AD of a \triangle ABC. Show that ar (ABE) = ar (ACE) ## Answer: AD is the median of \triangle ABC. Therefore, it will divide \triangle ABC into two triangles of equal areas. \therefore Area (\triangle ABD) = Area (\triangle ACD) ... (1) ED is the median of Δ EBC. \therefore Area (ΔEBD) = Area (ΔECD) ... (2) On subtracting equation (2) from equation (1), we obtain Area (\triangle ABD) – Area (EBD) = Area (\triangle ACD) – Area (\triangle ECD) Area (\triangle ABE) = Area (\triangle ACE) ## Question 10: ABCD is a parallelogram and AP and CQ are perpendiculars from vertices A and C on diagonal BD (See the given figure). Show that - (i) $\triangle APB \cong \triangle CQD$ - (ii) AP = CQ #### Answer: (i) In $\triangle APB$ and $\triangle CQD$, $\angle APB = \angle CQD$ (Each 90°) AB = CD (Opposite sides of parallelogram ABCD) $\angle ABP = \angle CDQ$ (Alternate interior angles for AB || CD) \therefore $\triangle APB \cong \triangle CQD$ (By AAS congruency) (ii) By using the above result $\triangle APB \cong \triangle CQD$, we obtain AP = CQ (By CPCT) ## Question 3: Show that the diagonals of a parallelogram divide it into four triangles of equal area. #### Answer: We know that diagonals of parallelogram bisect each other. Therefore, O is the mid-point of AC and BD. BO is the median in \triangle ABC. Therefore, it will divide it into two triangles of equal areas. \therefore Area (\triangle AOB) = Area (\triangle BOC) ... (1) In $\triangle BCD$, CO is the median. \therefore Area (\triangle BOC) = Area (\triangle COD) ... (2) Similarly, Area (\triangle COD) = Area (\triangle AOD) ... (3) From equations (1), (2), and (3), we obtain Area (\triangle AOB) = Area (\triangle BOC) = Area (\triangle COD) = Area (\triangle AOD) Therefore, it is evident that the diagonals of a parallelogram divide it into four triangles of equal area. #### **Question 4:** In the given figure, ABC and ABD are two triangles on the same base AB. If line-segment CD is bisected by AB at O, show that ar (ABC) = ar (ABD). Answer: Consider $\triangle ACD$. Line-segment CD is bisected by AB at O. Therefore, AO is the median of $\Delta \text{ACD}.$ \therefore Area (\triangle ACO) = Area (\triangle ADO) ... (1) Considering ΔBCD , BO is the median. ∴ Area (\triangle BCO) = Area (\triangle BDO) ... (2) Adding equations (1) and (2), we obtain Area (\triangle ACO) + Area (\triangle BCO) = Area (\triangle ADO) + Area (\triangle BDO) \Rightarrow Area (ΔABC) = Area (ΔABD) #### **Question 6:** In the given figure, diagonals AC and BD of quadrilateral ABCD intersect at O such that OB = OD. If AB = CD, then show that: (i) ar(DOC) = ar(AOB) (ii) ar(DCB) = ar(ACB) (iii) DA || CB or ABCD is a parallelogram. [Hint: From D and B, draw perpendiculars to AC.] #### Answer: Let us draw DN \square AC and BM \square AC. (i) In \triangle DON and \triangle BOM, \square DNO = \square BMO (By construction) \square DON = \square BOM (Vertically opposite angles) OD = OB (Given) By AAS congruence rule, Δ DON \square Δ BOM \square DN = BM ... (1) We know that congruent triangles have equal areas. \square Area (\triangle DON) = Area (\triangle BOM) ... (2) In \triangle DNC and \triangle BMA, \square DNC = \square BMA (By construction) CD = AB (Given) DN = BM [Using equation (1)] \square \triangle DNC \square \triangle BMA (RHS congruence rule) \square Area (\triangle DNC) = Area (\triangle BMA) ... (3) On adding equations (2) and (3), we obtain Area (\triangle DON) + Area (\triangle DNC) = Area (\triangle BOM) + Area (\triangle BMA) Therefore, Area ($\triangle DOC$) = Area ($\triangle AOB$) (ii) We obtained, Area (Δ DOC) = Area (Δ AOB) \square Area (\triangle DOC) + Area (\triangle OCB) = Area (\triangle AOB) + Area (\triangle OCB) (Adding Area (\triangle OCB) to both sides) \square Area (\triangle DCB) = Area (\triangle ACB) (iii) We obtained, Area (\triangle DCB) = Area (\triangle ACB) If two triangles have the same base and equal areas, then these will lie between the same parallels. In quadrilateral ABCD, one pair of opposite sides is equal (AB = CD) and the other pair of opposite sides is parallel (DA || CB). Therefore, ABCD is a parallelogram. ## **Question 7:** D and E are points on sides AB and AC respectively of \triangle ABC such that ar (DBC) = ar (EBC). Prove that DE || BC. Answer: Answer: Since Δ BCE and Δ BCD are lying on a common base BC and also have equal areas, Δ BCE and Δ BCD will lie between the same parallel lines. □ DE || BC ## **Question 8:** XY is a line parallel to side BC of a triangle ABC. If BE $\mid\mid$ AC and CF $\mid\mid$ AB meet XY at E and E respectively, show that $$ar(ABE) = ar(ACF)$$ Answer: It is given that XY || BC □ EY || BC BE || AC □ BE || CY Therefore, EBCY is a parallelogram. It is given that XY || BC □ XF || BC FC || AB □ FC || XB Therefore, BCFX is a parallelogram. Parallelograms EBCY and BCFX are on the same base BC and between the same parallels BC and EF. \square Area (EBCY) = Area (BCFX) ... (1) Consider parallelogram EBCY and ΔAEB These lie on the same base BE and are between the same parallels BE and AC. \square Area (ΔABE) = $\frac{1}{2}$ Area (EBCY) ... (2) Also, parallelogram BCFX and Δ ACF are on the same base CF and between the same parallels CF and AB. \square Area (ΔACF) = $\frac{1}{2}$ Area (BCFX) ... (3) From equations (1), (2), and (3), we obtain Area (\triangle ABE) = Area (\triangle ACF) ## **Question 9:** The side AB of a parallelogram ABCD is produced to any point P. A line through A and parallel to CP meets CB produced at Q and then parallelogram PBQR is completed (see the following figure). Show that ar(ABCD) = ar(PBQR). [Hint: Join AC and PQ. Now compare area (ACQ) and area (APQ)] ## Answer: Let us join AC and PQ. ΔACQ and ΔAQP are on the same base AQ and between the same parallels AQ and CP. \square Area (\triangle ACQ) = Area (\triangle APQ) \square Area (\triangle ACQ) - Area (\triangle ABQ) = Area (\triangle APQ) - Area (\triangle ABQ) \square Area (\triangle ABC) = Area (\triangle QBP) ... (1) Since AC and PQ are diagonals of parallelograms ABCD and PBQR respectively, $$\Box$$ Area (ΔABC) = $\frac{1}{2}$ Area (ABCD) ... (2) Area ($$\triangle QBP$$) = $\frac{1}{2}$ Area (PBQR) ... (3) From equations (1), (2), and (3), we obtain $$\frac{1}{2}$$ Area (ABCD) = $\frac{1}{2}$ Area (PBQR) Area (ABCD) = Area (PBQR) ## Question 10: Diagonals AC and BD of a trapezium ABCD with AB \parallel DC intersect each other at O. Prove that ar (AOD) = ar (BOC). Answer: It can be observed that ΔDAC and ΔDBC lie on the same base DC and between the same parallels AB and CD. \square Area (\triangle DAC) = Area (\triangle DBC) \square Area (\triangle DAC) - Area (\triangle DOC) = Area (\triangle DBC) - Area (\triangle DOC) \square Area (\triangle AOD) = Area (\triangle BOC) ## **Question 11:** In the given figure, ABCDE is a pentagon. A line through B parallel to AC meets DC produced at F. Show that (i) $$ar(ACB) = ar(ACF)$$ (ii) $$ar(AEDF) = ar(ABCDE)$$ ## Answer: (i) \triangle ACB and \triangle ACF lie on the same base AC and are between The same parallels AC and BF. \square Area (\triangle ACB) = Area (\triangle ACF) (ii) It can be observed that Area (\triangle ACB) = Area (\triangle ACF) \square Area (\triangle ACB) + Area (ACDE) = Area (ACF) + Area (ACDE) \square Area (ABCDE) = Area (AEDF) ## **Question 12:** A villager Itwaari has a plot of land of the shape of a quadrilateral. The Gram Panchayat of the village decided to take over some portion of his plot from one of the corners to construct a Health Centre. Itwaari agrees to the above proposal with the condition that he should be given equal amount of land in lieu of his land adjoining his plot so as to form a triangular plot. Explain how this proposal will be implemented. ## Answer: Let quadrilateral ABCD be the original shape of the field. The proposal may be implemented as follows. Join diagonal BD and draw a line parallel to BD through point A. Let it meet the extended side CD of ABCD at point E. Join BE and AD. Let them intersect each other at O. Then, portion Δ AOB can be cut from the original field so that the new shape of the field will be Δ BCE. (See figure) We have to prove that the area of ΔAOB (portion that was cut so as to construct Health Centre) is equal to the area of ΔDEO (portion added to the field so as to make the area of the new field so formed equal to the area of the original field) It can be observed that ΔDEB and ΔDAB lie on the same base BD and are between the same parallels BD and AE. \square Area (\triangle DEB) = Area (\triangle DAB) \square Area (\triangle DEB) - Area (\triangle DOB) = Area (\triangle DAB) - Area (\triangle DOB) \square Area (\triangle DEO) = Area (\triangle AOB) ## **Question 13:** ABCD is a trapezium with AB $\mid \mid$ DC. A line parallel to AC intersects AB at X and BC at Y. Prove that ar (ADX) = ar (ACY). [Hint: Join CX.] ### Answer: It can be observed that ΔADX and ΔACX lie on the same base AX and are between the same parallels AB and DC. \square Area (\triangle ADX) = Area (\triangle ACX) ... (1) Δ ACY and Δ ACX lie on the same base AC and are between the same parallels AC and XY. \square Area (\triangle ACY) = Area (ACX) ... (2) From equations (1) and (2), we obtain Area ($\triangle ADX$) = Area ($\triangle ACY$) ## **Question 14:** In the given figure, $AP \parallel BQ \parallel CR$. Prove that ar (AQC) = ar (PBR). ### Answer: Since $\triangle ABQ$ and $\triangle PBQ$ lie on the same base BQ and are between the same parallels AP and BQ, \square Area (\triangle ABQ) = Area (\triangle PBQ) ... (1) Again, ΔBCQ and ΔBRQ lie on the same base BQ and are between the same parallels BQ and CR. \square Area (\triangle BCQ) = Area (\triangle BRQ) ... (2) On adding equations (1) and (2), we obtain Area (\triangle ABQ) + Area (\triangle BCQ) = Area (\triangle PBQ) + Area (\triangle BRQ) \square Area (\triangle AQC) = Area (\triangle PBR) ## **Question 15:** Diagonals AC and BD of a quadrilateral ABCD intersect at O in such a way that ar (AOD) = ar (BOC). Prove that ABCD is a trapezium. Answer: It is given that Area (\triangle AOD) = Area (\triangle BOC) Area (\triangle AOD) + Area (\triangle AOB) = Area (\triangle BOC) + Area (\triangle AOB) Area (\triangle ADB) = Area (\triangle ACB) We know that triangles on the same base having areas equal to each other lie between the same parallels. Therefore, these triangles, \triangle ADB and \triangle ACB, are lying between the same parallels. i.e., AB || CD Therefore, ABCD is a trapezium. ## **Question 16:** In the given figure, ar (DRC) = ar (DPC) and ar (BDP) = ar (ARC). Show that both the quadrilaterals ABCD and DCPR are trapeziums. Answer: It is given that Area (\triangle DRC) = Area (\triangle DPC) As ΔDRC and ΔDPC lie on the same base DC and have equal areas, therefore, they must lie between the same parallel lines. □ DC || RP Therefore, DCPR is a trapezium. | It is also given that | |----------------------------------------------------------------------------------------------------| | Area (Δ BDP) = Area (Δ ARC) | | \square Area (BDP) — Area (\triangle DPC) = Area (\triangle ARC) — Area (\triangle DRC) | | \square Area (\triangle BDC) = Area (\triangle ADC) | | Since Δ BDC and Δ ADC are on the same base CD and have equal areas, they must lie | | between the same parallel lines. | | □ AB CD | | Therefore ABCD is a transzium | #### Exercise 9.4 ## Question 1: Parallelogram ABCD and rectangle ABEF are on the same base AB and have equal areas. Show that the perimeter of the parallelogram is greater than that of the rectangle. #### Answer: As the parallelogram and the rectangle have the same base and equal area, therefore, these will also lie between the same parallels. Consider the parallelogram ABCD and rectangle ABEF as follows. Here, it can be observed that parallelogram ABCD and rectangle ABEF are between the same parallels AB and CF. We know that opposite sides of a parallelogram or a rectangle are of equal lengths. Therefore, AB = EF (For rectangle) AB = CD (For parallelogram) \square CD = EF \square AB + CD = AB + EF ... (1) Of all the line segments that can be drawn to a given line from a point not lying on it, the perpendicular line segment is the shortest. \square AF < AD And similarly, BE < BC \square AF + BE < AD + BC ... (2) From equations (1) and (2), we obtain AB + EF + AF + BE < AD + BC + AB + CD Perimeter of rectangle ABEF < Perimeter of parallelogram ABCD ## **Question 2:** In the following figure, D and E are two points on BC such that BD = DE = EC. Show that ABD = ABC Can you answer the question that you have left in the 'Introduction' of this chapter, whether the field of *Budhia* has been actually divided into three parts of equal area? [**Remark:** Note that by taking BD = DE = EC, the triangle ABC is divided into three triangles ABD, ADE and AEC of equal areas. In the same way, by dividing BC into n equal parts and joining the points of division so obtained to the opposite vertex of BC, you can divide Δ ABC into n triangles of equal areas.] ## Answer: Let us draw a line segment AM \square BC. We know that, $$= \frac{1}{2} \times \text{Base} \times \text{Altitude}$$ Area of a triangle Area $$(\Delta ADE) = \frac{1}{2} \times DE \times AM$$ Area $$(\Delta ABD) = \frac{1}{2} \times BD \times AM$$ Area $$(\Delta AEC) = \frac{1}{2} \times EC \times AM$$ It is given that DE = BD = EC $$\frac{1}{2} \times DE \times AM = \frac{1}{2} \times BD \times AM = \frac{1}{2} \times EC \times AM$$ \square Area (\triangle ADE) = Area (\triangle ABD) = Area (\triangle AEC) It can be observed that Budhia has divided her field into 3 equal parts. ## Question 3: In the following figure, ABCD, DCFE and ABFE are parallelograms. Show that ar (ADE) = ar (BCF). #### Answer: It is given that ABCD is a parallelogram. We know that opposite sides of a parallelogram are equal. $$\square$$ AD = BC ... (1) Similarly, for parallelograms DCEF and ABFE, it can be proved that $$DE = CF ... (2)$$ And, $$EA = FB \dots (3)$$ In \triangle ADE and \triangle BCF, AD = BC [Using equation (1)] DE = CF [Using equation (2)] EA = FB [Using equation (3)] \square \triangle ADE \square BCF (SSS congruence rule) \square Area (\triangle ADE) = Area (\triangle BCF) ## **Question 4:** In the following figure, ABCD is parallelogram and BC is produced to a point Q such that AD = CQ. If AQ intersect DC at P, show that AD = CQ are AD = CQ. [Hint: Join AC.] ## Answer: It is given that ABCD is a parallelogram. AD || BC and AB || DC(Opposite sides of a parallelogram are parallel to each other) Join point A to point C. Consider $\triangle APC$ and $\triangle BPC$ ``` \DeltaAPC and \DeltaBPC are lying on the same base PC and between the same parallels PC and AB. Therefore, Area (\triangle APC) = Area (\triangle BPC) ... (1) In quadrilateral ACDQ, it is given that AD = CQ Since ABCD is a parallelogram, AD || BC (Opposite sides of a parallelogram are parallel) CQ is a line segment which is obtained when line segment BC is produced. ☐ AD || CQ We have, AC = DQ and AC \parallel DQ Hence, ACQD is a parallelogram. Consider \DeltaDCQ and \DeltaACQ These are on the same base CQ and between the same parallels CQ and AD. Therefore, Area (\DeltaDCQ) = Area (\DeltaACQ) \square Area (\triangleDCQ) – Area (\trianglePQC) = Area (\triangleACQ) – Area (\trianglePQC) \square Area (\triangleDPQ) = Area (\triangleAPC) ... (2) From equations (1) and (2), we obtain Area (\triangleBPC) = Area (\triangleDPQ) Question 5: ``` In the following figure, ABC and BDE are two equilateral triangles such that D is the mid-point of BC. If AE intersects BC at F, show that $$ar(BDE) = \frac{1}{4}ar(ABC)$$ $$ar(BDE) = \frac{1}{2}ar(BAE)$$ (iii) $$ar(ABC) = 2ar(BEC)$$ (iv) $$ar(BFE) = ar(AFD)$$ (v) $$ar(BFE) = 2ar(FED)$$ $$(vi)$$ $ar(FED) = \frac{1}{8}ar(AFC)$ [Hint: Join EC and AD. Show that BE || AC and DE || AB, etc.] Answer: (i) Let ${\sf G}$ and ${\sf H}$ be the mid-points of side AB and AC respectively. Line segment GH is joining the mid-points. Therefore, it will be parallel to third side BC and also its length will be half of the length of BC (mid-point theorem). $$\Box$$ GH = $\frac{1}{2}$ BC and GH || BD \square GH = BD = DC and GH || BD (D is the mid-point of BC) Consider quadrilateral GHDB. $GH \parallel BD$ and GH = BD Two line segments joining two parallel line segments of equal length will also be equal and parallel to each other. Therefore, BG = DH and BG || DH Hence, quadrilateral GHDB is a parallelogram. We know that in a parallelogram, the diagonal bisects it into two triangles of equal area. Hence, Area (Δ BDG) = Area (Δ HGD) Similarly, it can be proved that quadrilaterals DCHG, GDHA, and BEDG are parallelograms and their respective diagonals are dividing them into two triangles of equal area. ar (Δ GDH) = ar (Δ CHD) (For parallelogram DCHG) $ar(\Delta GDH) = ar(\Delta HAG)$ (For parallelogram GDHA) ar (\triangle BDE) = ar (\triangle DBG) (For parallelogram BEDG) $ar(\Delta ABC) = ar(\Delta BDG) + ar(\Delta GDH) + ar(\Delta DCH) + ar(\Delta AGH)$ $ar(\Delta ABC) = 4 \times ar(\Delta BDE)$ $$ar(BDE) = \frac{1}{4}ar(ABC)$$ Hence, (ii)Area ($\triangle BDE$) = Area ($\triangle AED$) (Common base DE and DE||AB) Area ($\triangle BDE$) – Area ($\triangle FED$) = Area ($\triangle AED$) – Area ($\triangle FED$) Area (\triangle BEF) = Area (\triangle AFD) (1) Area (\triangle ABD) = Area (\triangle ABF) + Area (\triangle AFD) Area (\triangle ABD) = Area (\triangle ABF) + Area (\triangle BEF) [From equation (1)] Area (\triangle ABD) = Area (\triangle ABE) (2) AD is the median in \triangle ABC. ar $$(\Delta ABD) = \frac{1}{2} \text{ar } (\Delta ABC)$$ = $\frac{4}{2} \text{ar } (\Delta BDE)$ (As proved earlier) $$ar (\Delta ABD) = 2ar (\Delta BDE)$$ (3) From (2) and (3), we obtain 2 ar (\triangle BDE) = ar (\triangle ABE) $$ar (\Delta BDE) = \frac{1}{2}ar (\Delta ABE)$$ (iii) ar (\triangle ABE) = ar (\triangle BEC) (Common base BE and BE||AC) ar (\triangle ABF) + ar (\triangle BEF) = ar (\triangle BEC) Using equation (1), we obtain $$ar(\Delta ABF) + ar(\Delta AFD) = ar(\Delta BEC)$$ $$ar(\Delta ABD) = ar(\Delta BEC)$$ $$\frac{1}{2}$$ ar (\triangle ABC) = ar (\triangle BEC) $$ar(\Delta ABC) = 2 ar(\Delta BEC)$$ (iv)It is seen that $\triangle BDE$ and ar $\triangle AED$ lie on the same base (DE) and between the parallels DE and AB. $$\Box$$ ar (\triangle BDE) = ar (\triangle AED) $$\square$$ ar (\triangle BDE) – ar (\triangle FED) = ar (\triangle AED) – ar (\triangle FED) $$\Box$$ ar (\triangle BFE) = ar (\triangle AFD) (v)Let h be the height of vertex E, corresponding to the side BD in \triangle BDE. Let H be the height of vertex A, corresponding to the side BC in \triangle ABC. $$ar(BDE) = \frac{1}{4}ar(ABC)$$. In (i), it was shown that $$\therefore \frac{1}{2} \times BD \times h = \frac{1}{4} \left(\frac{1}{2} \times BC \times H \right)$$ $$\Rightarrow BD \times h = \frac{1}{4} (2BD \times H)$$ $$\Rightarrow h = \frac{1}{2}H$$ In (iv), it was shown that ar ($\triangle BFE$) = ar ($\triangle AFD$). \Box ar (\triangle BFE) = ar (\triangle AFD) $$= \frac{1}{2} \times \text{FD} \times H = \frac{1}{2} \times \text{FD} \times 2h = 2\left(\frac{1}{2} \times \text{FD} \times h\right)$$ = $$2 \text{ ar } (\Delta FED)$$ Hence, $$ar(BFE) = 2ar(FED)$$. $$= \operatorname{ar}(\operatorname{BFE}) + \frac{1}{2}\operatorname{ar}(\operatorname{ABC}) \qquad \left[\operatorname{In} \text{ (iv), ar}(\operatorname{BFE}) = \operatorname{ar}(\operatorname{AFD}) \text{ ; AD is median of } \Delta \operatorname{ABC}\right]$$ $$= \operatorname{ar}(\operatorname{BFE}) + \frac{1}{2} \times 4\operatorname{ar}(\operatorname{BDE}) \qquad \left[\operatorname{In} \text{ (i), ar}(\operatorname{BDE}) = \frac{1}{4}\operatorname{ar}(\operatorname{ABC})\right]$$ $$= \operatorname{ar}(\operatorname{BFE}) + 2\operatorname{ar}(\operatorname{BDE}) \qquad \dots (5)$$ $$\operatorname{Now, by (v),} \operatorname{ar}(\operatorname{BFE}) = 2\operatorname{ar}(\operatorname{FED}). \dots (6)$$ $$\operatorname{ar}(\operatorname{BDE}) = \operatorname{ar}(\operatorname{BFE}) + \operatorname{ar}(\operatorname{FED}) = 2\operatorname{ar}(\operatorname{FED}) + \operatorname{ar}(\operatorname{FED}) = 3\operatorname{ar}(\operatorname{FED}) \qquad \dots (7)$$ $$\operatorname{Therefore, from equations (5), (6), and (7), we get:}$$ $$\operatorname{ar}(\operatorname{AFC}) = 2\operatorname{ar}(\operatorname{FED}) + 2 \times 3\operatorname{ar}(\operatorname{FED}) = 8\operatorname{ar}(\operatorname{FED})$$ $$ar(AFC) = 2ar(FED)$$ $$ar(AFC) = 8ar(FED)$$ $$\therefore ar(AFC) = 8ar(FED)$$ Hence, $$ar(FED) = \frac{1}{8}ar(AFC)$$ ## Question 6: Diagonals AC and BD of a quadrilateral ABCD intersect each other at P. Show that $ar(APB) \times ar(CPD) = ar(APD) \times ar(BPC)$ [Hint: From A and C, draw perpendiculars to BD] Answer: Let us draw AM □ BD and CN □ BD $$= \frac{1}{2} \times \text{Base} \times \text{Altitude}$$ Area of a triangle $$ar(APB) \times ar(CPD) = \left[\frac{1}{2} \times BP \times AM\right] \times \left[\frac{1}{2} \times PD \times CN\right]$$ $$= \frac{1}{4} \times BP \times AM \times PD \times CN$$ $$ar(APD) \times ar(BPC) = \left[\frac{1}{2} \times PD \times AM\right] \times \left[\frac{1}{2} \times CN \times BP\right]$$ $$= \frac{1}{4} \times PD \times AM \times CN \times BP$$ $$= \frac{1}{4} \times BP \times AM \times PD \times CN$$ \square ar (APB) \times ar (CPD) = ar (APD) \times ar (BPC) ## Question 7: P and Q are respectively the mid-points of sides AB and BC of a triangle ABC and R is the mid-point of AP, show that $$ar(PRQ) = \frac{1}{2}ar(ARC) \quad ar(RQC) = \frac{3}{8}ar(ABC)$$ (ii) $$ar(PBQ) = ar(ARC)$$ Answer: Take a point S on AC such that S is the mid-point of AC. Extend PQ to T such that PQ = QT. Join TC, QS, PS, and AQ. In \triangle ABC, P and Q are the mid-points of AB and BC respectively. Hence, by using mid-point theorem, we obtain PQ || AC and PQ $$=\frac{1}{2}$$ AC $$\square$$ PQ || AS and PQ = AS (As S is the mid-point of AC) \square PQSA is a parallelogram. We know that diagonals of a parallelogram bisect it into equal areas of triangles. $$\square$$ ar (\triangle PAS) = ar (\triangle SQP) = ar (\triangle PAQ) = ar (\triangle SQA) Similarly, it can also be proved that quadrilaterals PSCQ, QSCT, and PSQB are also parallelograms and therefore, $$ar(\Delta PSQ) = ar(\Delta CQS)$$ (For parallelogram PSCQ) $$ar (\Delta QSC) = ar (\Delta CTQ) (For parallelogram QSCT)$$ ar $$(\Delta PSQ)$$ = ar (ΔQBP) (For parallelogram PSQB) Thus, ar $$(\Delta PAS)$$ = ar (ΔSQP) = ar (ΔPAQ) = ar (ΔSQA) = ar (ΔQSC) = ar (ΔCTQ) = ar (ΔQBP) ... (1) Also, ar $$(\Delta ABC)$$ = ar (ΔPBQ) + ar (ΔPAS) + ar (ΔPQS) + ar (ΔQSC) $$ar(\Delta ABC) = ar(\Delta PBQ) + ar(\Delta PBQ) + ar(\Delta PBQ) + ar(\Delta PBQ)$$ = ar $$(\Delta PBQ)$$ + ar (ΔPBQ) + ar (ΔPBQ) + ar (ΔPBQ) $$= 4 \text{ ar } (\Delta PBQ)$$ $$\Box \text{ ar } (\Delta PBQ) = \frac{1}{4} \text{ ar } (\Delta ABC) \dots (2)$$ (i)Join point P to C. In $\triangle PAQ$, QR is the median. $$\therefore \operatorname{ar}(\Delta PRQ) = \frac{1}{2}\operatorname{ar}(\Delta PAQ) = \frac{1}{2} \times \frac{1}{4}\operatorname{ar}(\Delta ABC) = \frac{1}{8}\operatorname{ar}(\Delta ABC) \dots (3)$$ In $\triangle ABC$, P and Q are the mid-points of AB and BC respectively. Hence, by using mid-point theorem, we obtain $$=\frac{1}{2}AC$$ $$AC = 2PQ \implies AC = PT$$ Hence, PACT is a parallelogram. $$ar(PACT) = ar(PACQ) + ar(\Delta QTC)$$ = ar (PACQ) + ar ($$\Delta$$ PBQ [Using equation (1)] $$\square$$ ar (PACT) = ar (\triangle ABC) ... (4) $$ar(\Delta ARC) = \frac{1}{2}ar(\Delta PAC) \quad (CR \text{ is the median of } \Delta PAC)$$ $$= \frac{1}{2} \times \frac{1}{2}ar(PACT) \text{ (PC is the diagonal of parallelogram PACT)}$$ $$= \frac{1}{4}ar(\Delta PACT) = \frac{1}{4}ar(\Delta ABC)$$ $$\Rightarrow \frac{1}{2}ar(\Delta ARC) = \frac{1}{8}ar(\Delta ABC)$$ $$\Rightarrow \frac{1}{2}ar(\Delta ARC) = ar(\Delta PRQ) \text{ [Using equation (3)]} \quad ... (5)$$ (ii) $$ar(PACT) = ar(\Delta PRQ) + ar(\Delta ARC) + ar(\Delta QTC) + ar(\Delta RQC)$$ Putting the values from equations (1), (2), (3), (4), and (5), we obtain $$ar(\Delta ABC) = \frac{1}{8}ar(\Delta ABC) + \frac{1}{4}ar(\Delta ABC) + \frac{1}{4}ar(\Delta ABC) + ar(\Delta RQC)$$ $$ar(\Delta ABC) = \frac{5}{8}ar(\Delta ABC) + ar(\Delta RQC)$$ $$ar(\Delta RQC) = \left(1 - \frac{5}{8}\right)ar(\Delta ABC)$$ $$ar(\Delta RQC) = \frac{3}{8}ar(\Delta ABC)$$ (iii)In parallelogram PACT, $$ar(\Delta ARC) = \frac{1}{2}ar(\Delta PAC) \qquad (CR \text{ is the median of } \Delta PAC)$$ $$= \frac{1}{2} \times \frac{1}{2}ar(PACT) \text{ (PC is the diagonal of parallelogram PACT)}$$ $$= \frac{1}{4}ar(\Delta PACT)$$ $$= \frac{1}{4}ar(\Delta ABC)$$ $$= ar(\Delta PBQ)$$ ## Question 8: In the following figure, ABC is a right triangle right angled at A. BCED, ACFG and ABMN are squares on the sides BC, CA and AB respectively. Line segment AX \square DE meets BC at Y. Show that: - (i) ΔMBC □ ΔABD - (ii) ar(BYXD) = 2ar(MBC) - (iii) ar(BYXD) = 2ar(ABMN) - (iv) ΔFCB □ ΔACE (v) $$ar(CYXE) = 2ar(FCB)$$ (vi) $$ar(CYXE) = ar(ACFG)$$ (vii) $$ar(BCED) = ar(ABMN) + ar(ACFG)$$ **Note:** Result (vii) is the famous *Theorem of Pythagoras*. You shall learn a simpler proof of this theorem in class X. Answer: | (i) We know that each angle of a square is 90°. | |--------------------------------------------------------------------------------------| | Hence, □ABM = □DBC = 90° | | \square \square ABM + \square ABC = \square DBC + \square ABC | | \square \square MBC = \square ABD | | In Δ MBC and Δ ABD, | | \square MBC = \square ABD (Proved above) | | MB = AB (Sides of square ABMN) | | BC = BD (Sides of square BCED) | | □ ΔMBC □ ΔABD (SAS congruence rule) | | (ii) We have | | ΔMBC □ ΔABD | | \square ar (\triangle MBC) = ar (\triangle ABD) (1) | | It is given that AX \square DE and BD \square DE (Adjacent sides of square | | BDEC) | | \square BD AX (Two lines perpendicular to same line are parallel to each other) | | ΔABD and parallelogram BYXD are on the same base BD and between the same | | parallels BD and AX. | $$\therefore \operatorname{ar} (\Delta ABD) = \frac{1}{2} \operatorname{ar} (BYXD)$$ $$ar(BYXD) = 2ar(\Delta ABD)$$ Area (BYXD) = 2 area (Δ MBC) [Using equation (1)] ... (2) (iii) ΔMBC and parallelogram ABMN are lying on the same base MB and between same parallels MB and NC. $$\therefore \operatorname{ar} (\Delta MBC) = \frac{1}{2} \operatorname{ar} (ABMN)$$ $2 \operatorname{ar} (\Delta MBC) = \operatorname{ar} (ABMN)$ ar (BYXD) = ar (ABMN) [Using equation (2)] ... (3) (iv) We know that each angle of a square is 90°. \Box \Box FCA = \Box BCE = 90° \square \square FCA + \square ACB = \square BCE + \square ACB \Box \Box FCB = \Box ACE In \triangle FCB and \triangle ACE, $\Box FCB = \Box ACE$ FC = AC (Sides of square ACFG) CB = CE (Sides of square BCED) Δ FCB \square Δ ACE (SAS congruence rule) (v) It is given that AX \square DE and CE \square DE (Adjacent sides of square BDEC) Hence, CE || AX (Two lines perpendicular to the same line are parallel to each other) Consider \triangle ACE and parallelogram CYXE Δ ACE and parallelogram CYXE are on the same base CE and between the same parallels CE and AX. $$\therefore \operatorname{ar} (\Delta ACE) = \frac{1}{2} \operatorname{ar} (CYXE)$$ \square ar (CYXE) = 2 ar (\triangle ACE) ... (4) We had proved that \square \triangle FCB \square \triangle ACE ar (\triangle FCB) \square ar (\triangle ACE) ... (5) On comparing equations (4) and (5), we obtain ar (CYXE) = 2 ar (Δ FCB) ... (6) (vi) Consider ΔFCB and parallelogram ACFG Δ FCB and parallelogram ACFG are lying on the same base CF and between the same parallels CF and BG. ∴ ar ($$\Delta$$ FCB) = $\frac{1}{2}$ ar (ACFG) □ ar (ACFG) = 2 ar (Δ FCB) □ ar (ACFG) = ar (CYXE) [Using equation (6)] ... (7) (vii) From the figure, it is evident that ar (BCED) = ar (BYXD) + ar (CYXE) \square ar (BCED) = ar (ABMN) + ar (ACFG) [Using equations (3) and (7)]