SIMILAR TRIANGLES
Geometry is the right foundation of all painting, I have decided to teach its rudiments and principles to all youngsters eager for art.

1. ABC is a right-angled triangle, right-angled at A . A circle is inscribed in it. The lengths of the two sides containing the right angle are 6 cm and 8 cm . Find the radius of the in circle.
(Ans: $\mathrm{r}=2$)

Ans: $\quad \mathrm{BC}=10 \mathrm{~cm}$
$y+z=8 \mathrm{~cm}$
$x+z=6 \mathrm{~cm}$
$x+y=10$
$\Rightarrow \mathrm{x}+\mathrm{y}+\mathrm{z}=12$
$\mathrm{z}=12-10$
$\mathrm{z}=2 \mathrm{~cm}$
\therefore radius $=2 \mathrm{~cm}$
2. $A B C$ is a triangle. $P Q$ is the line segment intersecting $A B$ in P and $A C$ in Q such that PQ parallel to BC and divides triangle ABC into two parts equal in area. Find BP : AB.

Ans: Refer example problem of text book.
3. In a right triangle $A B C$, right angled at C, P and Q are points of the sides $C A$ and CB respectively, which divide these sides in the ratio 2: 1.
Prove that $\quad 9 \mathrm{AQ}^{2}=9 \mathrm{AC}^{2}+4 \mathrm{BC}^{2}$

$$
9 \mathrm{BP}^{2}=9 \mathrm{BC}^{2}+4 \mathrm{AC}^{2}
$$

$$
9\left(\mathrm{AQ}^{2}+\mathrm{BP}^{2}\right)=13 \mathrm{AB}^{2}
$$

Ans: \quad Since P divides AC in the ratio 2:1
$C P=\frac{2}{3} A C \quad Q C=\frac{2}{3} B C$
$\mathrm{AQ}^{2}=\mathrm{QC}^{2}+\mathrm{AC}^{2}$
$\mathrm{AQ}^{2}=\frac{4}{9} \mathrm{BC}^{2}+\mathrm{AC}^{2}$
$9 \mathrm{AQ}^{2}=4 \mathrm{BC}^{2}+9 \mathrm{AC}^{2}$

Similarly we get $9 \mathrm{BP}^{2}=9 \mathrm{BC}^{2}+4 \mathrm{AC}^{2}$
Adding (1) and (2) we get $9\left(\mathrm{AQ}^{2}+\mathrm{BP}^{2}\right)=13 \mathrm{AB}^{2}$
4. P and Q are the mid points on the sides CA and CB respectively of triangle ABC right angled at C. Prove that $4\left(A Q^{2}+B P^{2}\right)=5 A B^{2}$

Self Practice

5. In an equilateral triangle ABC , the side BC is trisected at D .

Prove that $9 A D^{2}=7 A B^{2}$

Self Practice

6. There is a staircase as shown in figure connecting points A and B. Measurements of steps are marked in the figure. Find the straight distance between A and B.
(Ans:10)

Ans: Apply Pythagoras theorem for each right triangle add to get length of AB .
7. Find the length of the second diagonal of a rhombus, whose side is 5 cm and one of the diagonals is 6 cm .

Ans: Length of the other diagonal $=2(\mathrm{BO})$
where $\mathrm{BO}=4 \mathrm{~cm}$
$\therefore \mathrm{BD}=8 \mathrm{~cm}$.
8. Prove that three times the sum of the squares of the sides of a triangle is equal to four times the sum of the squares of the medians of the triangle.

Ans: To prove $3\left(\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CA}^{2}\right)=4\left(\mathrm{AD}^{2}+\mathrm{BE}^{2}+\mathrm{CF}^{2}\right)$
In any triangle sum of squares of any two sides is equal to twice the square of half of third side, together with twice the square of median bisecting it.
If AD is the median
$\mathrm{AB}^{2}+\mathrm{AC}^{2}=2\left\{A D^{2}+\frac{B C^{2}}{4}\right\}$
$2\left(\mathrm{AB}^{2}+\mathrm{AC}^{2}\right)=4 \mathrm{AD}^{2}+\mathrm{BC}^{2}$
Similarly by taking $\mathrm{BE} \& \mathrm{CF}$ as medians we get
$\Rightarrow 2\left(\mathrm{AB}^{2}+\mathrm{BC}^{2}\right)=4 \mathrm{BE}^{2}+\mathrm{AC}^{2}$
\& $2\left(\mathrm{AC}^{2}+\mathrm{BC}^{2}\right)=4 \mathrm{CF}^{2}+\mathrm{AB}^{2}$
Adding we get
$\Rightarrow 3\left(\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{AC}^{2}\right)=4\left(\mathrm{AD}^{2}+\mathrm{BE}^{2}+\mathrm{CF}^{2}\right)$

9. ABC is an isosceles triangle is which $\mathrm{AB}=\mathrm{AC}=10 \mathrm{~cm} . \quad \mathrm{BC}=12$. PQRS is a rectangle inside the isosceles triangle. Given $\mathrm{PQ}=\mathrm{SR}=\mathrm{y} \mathrm{cm}, \mathrm{PS}=\mathrm{QR}=2 \mathrm{x}$. Prove that $\mathrm{x}=6-\frac{3 y}{4}$.

Ans: $\mathrm{AL}=8 \mathrm{~cm}$
$\triangle \mathrm{BPQ} \sim \triangle \mathrm{BAL}$
$\Rightarrow \frac{B Q}{P Q}=\frac{B L}{A L}$
$\Rightarrow \frac{6-x}{y}=\frac{6}{8}$
$\Rightarrow \mathrm{x}=6-\frac{3 y}{4}$.
Hence proved
10. If ABC is an obtuse angled triangle, obtuse angled at B and if $\mathrm{AD} \perp \mathrm{CB}$

Prove that $\mathrm{AC} 2=\mathrm{AB}^{2}+\mathrm{BC}^{2}+2 \mathrm{BCxBD}$
Ans: $\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{CD}^{2}$
$=A D^{2}+(B C+B D)^{2}$
$=A D^{2}+B C^{2}+2 B C \cdot B D+B D^{2}$
$=A B^{2}+B C^{2}+2 B C \cdot B D$

11. If ABC is an acute angled triangle, acute angled at B and $\mathrm{AD} \perp \mathrm{BC}$ prove that $A C^{2}=A B^{2}+B C^{2}-2 B C x B D$

Ans: Proceed as sum no. 10.
12. Prove that in any triangle the sum of the squares of any two sides is equal to twice the square of half of the third side together with twice the square of the median, which bisects the third side.
Ans: \quad To prove $\mathrm{AB}^{2}+\mathrm{AC}^{2}=2 \mathrm{AD}^{2}+2\left(\frac{1}{2} B C\right)^{2}$
Draw AE \perp BC
Apply property of Q. No. 10 \& 11.
In $\triangle \mathrm{ABD}$ since $\angle \mathrm{D}>90^{\circ}$
$\therefore \mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{BD}^{2}+2 \mathrm{BD} \times \mathrm{DE}$
$\triangle \mathrm{ACD}$ since $\angle \mathrm{D}<90^{\circ}$
$\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{DC}^{2}-2 \mathrm{DC} \times \mathrm{DE}$

Adding (1) \& (2)
$\mathrm{AB}^{2}+\mathrm{AC}^{2}=2\left(\mathrm{AD}^{2}+\mathrm{BD}^{2}\right)$

$$
=2\left(\mathrm{AD}^{2}+\left(\frac{1}{2} B C\right)^{2}\right)
$$

Or $\mathrm{AB}^{2}+\mathrm{AC}^{2}=2\left(\mathrm{AD}^{2}+\mathrm{BD}^{2}\right)$
Hence proved
13. If A be the area of a right triangle and b one of the sides containing the right angle, prove that the length of the altitude on the hypotenuse is $\frac{2 A b}{\sqrt{b^{4}+4 A^{2}}}$.

Ans: Let $\mathrm{QR}=\mathrm{b}$
$\mathrm{A}=\operatorname{Ar}(\triangle \mathrm{PQR})$
$A=\frac{1}{2} \times b \times P Q$
$\mathrm{PQ}=\frac{2 A}{b}$.
$\Delta \mathrm{PNQ} \sim \Delta \mathrm{PQR}(\mathrm{AA})$
$\Rightarrow \frac{P Q}{P R}=\frac{N Q}{Q R}$
From $\triangle \mathrm{PQR}$
$\mathrm{PQ}^{2}+\mathrm{QR}^{2}=\mathrm{PR}^{2}$
$\frac{4 A^{2}}{b^{2}}+\mathrm{b}^{2}=\mathrm{PR}^{2}$

$\mathrm{PR}=\sqrt{\frac{4 A^{2}+b^{4}}{b^{2}}}=\frac{\sqrt{4 A^{2}+b^{4}}}{b}$
Equation (2) becomes
$\frac{2 A}{b x P R}=\frac{N Q}{b}$
$\mathrm{NQ}=\frac{2 A}{P R}$
$\mathrm{NQ}=\frac{2 A b}{\sqrt{4 A^{2}+b^{4}}} \mathrm{Ans}$
14. ABC is a right triangle right-angled at C and $\mathrm{AC}=\sqrt{3} \mathrm{BC}$. Prove that $\angle \mathrm{ABC}=60^{\circ}$.

Ans: \quad Tan $B=\frac{A C}{B C}$
Tan $B=\frac{\sqrt{3} B C}{B C}$
$\operatorname{Tan} \mathrm{B}=\sqrt{3}$
\Rightarrow Tan $\mathrm{B}=\operatorname{Tan} 60$

$\Rightarrow \mathrm{B}=60^{\circ}$
$\Rightarrow \angle \mathrm{ABC}=60^{\circ}$
Hence proved
15. ABCD is a rectangle. $\triangle \mathrm{ADE}$ and $\triangle \mathrm{ABF}$ are two triangles such that $\angle \mathrm{E}=\angle \mathrm{F}$ as shown in the figure. Prove that $\mathrm{AD} \times \mathrm{AF}=\mathrm{AE} \times \mathrm{AB}$.

Ans: \quad Consider $\triangle \mathrm{ADE}$ and $\triangle \mathrm{ABF}$
$\angle \mathrm{D}=\angle \mathrm{B}=90^{\circ}$
$\angle \mathrm{E}=\angle \mathrm{F} \quad$ (given)
$\therefore \triangle \mathrm{ADE} \cong \triangle \mathrm{ABF}$
$\frac{A D}{A B}=\frac{A E}{A F}$

$\Rightarrow \mathrm{AD} \times \mathrm{AF}=\mathrm{AB} \times \mathrm{AE}$
Proved
16. In the given figure, $\angle \mathrm{AEF}=\angle \mathrm{AFE}$ and E is the mid-point of CA . Prove that
$\frac{B D}{C D}=\frac{B F}{C E}$
Ans: Draw CG $\|$ DF
In $\triangle \mathrm{BDF}$
CG $\|$ DF
$\therefore \frac{B D}{C D}=\frac{\mathrm{BF}}{\mathrm{GF}}$
BPT
In $\triangle \mathrm{AFE}$
$\angle \mathrm{AEF}=\angle \mathrm{AFE}$
$\Rightarrow \mathrm{AF}=\mathrm{AE}$
$\Rightarrow \mathrm{AF}=\mathrm{AE}=\mathrm{CE}$

In $\Delta \mathrm{ACG}$
E is the mid point of $A C$
$\Rightarrow \mathrm{FG}=\mathrm{AF}$
\therefore From (1) \& (2)

$$
\frac{B D}{C D}=\frac{B F}{C E}
$$

Hence proved
17. ABCD is a parallelogram in the given figure, AB is divided at P and CD and Q so that $\mathrm{AP}: \mathrm{PB}=3: 2$ and $\mathrm{CQ}: \mathrm{QD}=4: 1$. If PQ meets AC at R , prove that $\mathrm{AR}=\frac{3}{7} \mathrm{AC}$.

Ans: $\quad \Delta \mathrm{APR} \sim \Delta \mathrm{CQR}$ (AA)
$\Rightarrow \frac{A P}{C Q}=\frac{P R}{Q R}=\frac{A R}{C R}$
$\Rightarrow \frac{A P}{C Q}=\frac{A R}{C R} \quad \& \mathrm{AP}=\frac{3}{5} \mathrm{AB}$
$\Rightarrow \frac{3 A B}{5 C Q}=\frac{A R}{C R} \& \mathrm{CQ}=\frac{4}{5} \mathrm{CD}=\frac{4}{5} \mathrm{AB}$
$\Rightarrow \frac{A R}{C R}=\frac{3}{4}$
$\Rightarrow \frac{C R}{A R}=\frac{4}{3}$
$\frac{C R+A R}{A R}=\frac{4}{3}+1$
$\Rightarrow \frac{A C}{A R}=\frac{7}{3}$
$\Rightarrow \mathrm{AR}=\frac{3}{7} \mathrm{AC}$
Hence proved

18. Prove that the area of a rhombus on the hypotenuse of a right-angled triangle, with one of the angles as 60°, is equal to the sum of the areas of rhombuses with one of their angles as 60° drawn on the other two sides.

Ans: Hint: Area of Rhombus of side a \& one angle of 60°
$=\frac{\sqrt{3}}{2} \times \mathrm{axa}=\frac{\sqrt{3}}{2} \mathrm{a}^{2}$
19. An aeroplane leaves an airport and flies due north at a speed of $1000 \mathrm{~km} / \mathrm{h}$. At the same time, another plane leaves the same airport and flies due west at a speed of $1200 \mathrm{~km} / \mathrm{h}$. How far apart will be the two planes after $1 \frac{1}{2}$ hours. (Ans:300 $\sqrt{61 K m}$)

Ans: $\quad \mathrm{ON}=1500 \mathrm{~km}(\mathrm{dist}=\mathrm{s} \mathrm{x} \mathrm{t})$

$$
\begin{aligned}
\mathrm{OW}= & 1800 \mathrm{~km} \\
\mathrm{NW}= & \sqrt{1500^{2}+1800^{2}} \\
& =\sqrt{5490000} \\
& =300 \sqrt{61} \mathrm{~km}
\end{aligned}
$$

20. ABC is a right-angled isosceles triangle, right-angled at B . AP , the bisector of $\angle B A C$, intersects $B C$ at P. Prove that $A C^{2}=A P^{2}+2(1+\sqrt{2}) B P^{2}$

Ans: $\quad \mathrm{AC}=\sqrt{2} \mathrm{AB}($ Since $\mathrm{AB}=\mathrm{BC})$
$\frac{A B}{A C}=\frac{B P}{C P}$ (Bisector Theorem)
$\Rightarrow \mathrm{CP}=\sqrt{2} \mathrm{BP}$
$A C^{2}-A P^{2}=A C^{2}-\left(A B^{2}+\mathrm{BP}^{2}\right)$
$=\mathrm{AC}^{2}-\mathrm{AB}^{2}-\mathrm{BP}^{2}$
$=\mathrm{BC}^{2}-\mathrm{BP}^{2}$
$=(\mathrm{BP}+\mathrm{PC})^{2}-\mathrm{BP}^{2}$
$=(\mathrm{BP}+\sqrt{2} \mathrm{BP})^{2}-\mathrm{BP}^{2}$

$=2 \mathrm{BP}^{2}+2 \sqrt{2} \mathrm{BP}^{2}$
$=2(\sqrt{2}+1) \mathrm{BP}^{2} \Rightarrow \mathrm{AC}^{2}=\mathrm{AP}^{2}+2(1+\sqrt{2}) \mathrm{BP}^{2}$
Proved

