## JSUNIL TUTORIAL

### ACBSE Coaching for Mathematics and Science

### POLYNOMIAL CLASS \_ 9



#### SECTION - A

|       |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OLOTION A                                       |                                      |                          |  |
|-------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------|--------------------------|--|
|       | iple Choice Questions                                                                                | Control of the Control of Control | ~ ~                                             |                                      | (1 Mark each)            |  |
| 1.    | Which of the following                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                      |                          |  |
|       | (a) $x + 2$                                                                                          | (b) $x^2 + 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (c) $x^3 + 2$                                   | (d) $2x + 2$                         | <b>Ans.</b> (b)          |  |
| 2.    | The zero of the polynomial $p(x) = 2x + 5$ is:                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                      |                          |  |
|       | (a) $\frac{2}{5}$                                                                                    | (b) $\frac{5}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (c) 0                                           | (d) $-\frac{5}{2}$                   | <b>Ans.</b> ( <i>d</i> ) |  |
| 3.    | If $x^{51} + 51$ is divided by                                                                       | (x + 1) the remainde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | r is:                                           |                                      |                          |  |
|       | (a) 0                                                                                                | (b) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (c) 49                                          | (d) 50                               | <b>Ans.</b> ( <i>d</i> ) |  |
| 4.    | The remainder obtained                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                      |                          |  |
|       | (a) $p\left(\frac{-b}{a}\right)$                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (c) $P\left(\frac{b}{a}\right)$                 | (d) $p\left(\frac{-a}{b}\right)$     | <b>Ans.</b> (c)          |  |
| 5.    | $a^2 + b^2 + c^2 - ab - bc -$                                                                        | ca equals:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 | 1                                    |                          |  |
|       | (a) $(a+b+c)^2$                                                                                      | $(b) (a-b-c)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $(c) (a-b+c)^2$                                 | (d) $\frac{1}{2}[(a-b)^2 + (b-b)^2]$ | $(c)^2 + (c-a)^2$        |  |
|       |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | 2                                    | <b>Ans.</b> ( <i>d</i> ) |  |
| 6.    | Which of the following                                                                               | is a binomial in y?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 |                                      |                          |  |
|       | (a) $y^2 + \sqrt{2}$                                                                                 | (b) $y + \frac{1}{y} + 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (c) $\sqrt{y} + \sqrt{2}y$                      | (d) $y\sqrt{y}+1$                    | <b>Ans.</b> (a)          |  |
| 7.    | Which of the following                                                                               | polynomials has -3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | as a zero ?                                     |                                      |                          |  |
|       | (a) $(x-3)$                                                                                          | (b) $x^2 - 9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (c) $x^2 - 3x$                                  | (d) $x^2 + 3$                        | <b>Ans.</b> (b)          |  |
| 8.    | Which of the following                                                                               | is a trinomial in $x$ ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                 |                                      |                          |  |
|       | (a) $3^3 + 1$                                                                                        | (b) $x^3 + x^2 + x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (c) $x\sqrt{x} + \sqrt{x} + 1$                  | (d) $x^3 + 2x$                       | <b>Ans.</b> (b)          |  |
| 9.    | The value of the polynor                                                                             | $mial x^2 - x - 1 at x =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | : – 1 is :                                      |                                      |                          |  |
|       | (a) $-3$                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | ( <i>d</i> ) 0                       | <b>Ans.</b> (b)          |  |
| 10.   | Which of the following                                                                               | is a polynomial in $x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ?                                               |                                      |                          |  |
|       | (a) $x + \frac{1}{x}$                                                                                | (b) $x^2 + \sqrt{x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (c) $x + \sqrt{2}x^2 + 1$                       | (d) $\sqrt{3}x+1$                    | <b>Ans.</b> (c)          |  |
| 11.   | The remainder when $x^2$                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                      |                          |  |
|       | (a) 4                                                                                                | (b) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$2 SQ 5023                                     | (d) -2                               | <b>Ans.</b> (b)          |  |
| 12    | The factors of $(2a - b)^3$                                                                          | 13.7-A 15.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 35-57                                           | (11) 2                               | 1113 (0)                 |  |
| 12.   |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                      |                          |  |
|       | (a) $(2a-b)(b-2c)(c-b)(b-2c)(c-b)(b-2c)(c-b)(b-2c)(c-b)(b-2c)(c-b)(c-b)(c-b)(c-b)(c-b)(c-b)(c-b)(c-$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (b) $3(2a-b)(b-2c)(ab) = 3a \times b \times 2a$ | (c-a)                                | A ma (a)                 |  |
| 13    | (c) $6(2a-b)(b-2c)(c)$<br>In which of the following                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                      | <b>Ans.</b> (c)          |  |
| 13.   |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | (d) $-2x^3 + x^2 - 13x -$            | 19 <b>Ans.</b> (a)       |  |
| 14.   | One of the factors of $(x - 1)$                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (c) $4x - 13x - 23$                             | (a) -2x + x - 15x -                  | 1) Ans. (a)              |  |
| 12.00 | (a) $x^2 - 1$                                                                                        | (b) $x + 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (c) $x - 1$                                     | (d) $x + 4$                          | <b>Ans.</b> (c)          |  |
| 15.   | The coefficient of $x^2$ in t                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | ONDOOR STEEL OF                      |                          |  |
|       | (a) 3                                                                                                | (b) 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (c) -2                                          | (d) 1                                | <b>Ans.</b> (c)          |  |
| 16.   | The coefficient of $x^2$ in (                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | * 6                                             | 2000                                 |                          |  |
|       | (a) -17                                                                                              | (b) -10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (c) -3                                          | (d) 17                               | <b>Ans.</b> ( <i>d</i> ) |  |

(a) f(0)

17. If a polynomial p(x) is divided by x - a then remainder is

(b) f(a)

(c) f(-a)

(*d*) f(a) - f(0)

**Ans.** (*b*)

# JSUNIL TUTORIAL

### ACBSE Coaching for Mathematics and Science

**18.** The degree of the polynomial  $2 - y^2 - y^3 + 2y^7$  is:

|      | (a) 2                                                                              | (b) 7                                                           | (c)   | 0                           | ( <i>d</i> ) | 3                         | Ans. $(b)$               |
|------|------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------|-----------------------------|--------------|---------------------------|--------------------------|
| 19.  | Degree of zero polynom                                                             |                                                                 |       |                             |              |                           |                          |
| •    | (a) 0                                                                              |                                                                 |       | any natural number          | (d)          | not defined               | <b>Ans.</b> ( <i>d</i> ) |
| 20.  | Degree of which of the f                                                           |                                                                 |       |                             |              | . 1                       |                          |
| 01   | (a) x                                                                              |                                                                 |       |                             | (d)          | $x + \frac{1}{x}$         | <b>Ans.</b> ( <i>b</i> ) |
| 21.  | What is remainder when                                                             |                                                                 |       | . 12                        | (4)          | 2                         | Ama (a)                  |
|      | (a) 0                                                                              | (0) -1                                                          | (c)   |                             | ( <i>d</i> ) | 2                         | <b>Ans.</b> (c)          |
| 22.  | The coefficient of $x^2$ in                                                        | $(3x + x^3) \left  x + \frac{1}{x} \right $ is                  | :     |                             |              |                           |                          |
|      | The coefficient of $x^2$ in (a) 3                                                  | (b) 1                                                           | (c)   | 4                           | ( <i>d</i> ) | 2                         | <b>Ans.</b> (c)          |
| 23.  | Product of $\left(x - \frac{1}{x}\right)\left(x + \frac{1}{x}\right)$              | $\frac{1}{x}\bigg)\bigg(x^2 + \frac{1}{x^2}\bigg) \text{ is: }$ |       |                             |              |                           |                          |
|      | (a) $x^4 + \frac{1}{x^4}$                                                          | $\mathcal{A}$                                                   |       | $x^4 - \frac{1}{x^4}$       | ( <i>d</i> ) | $x^2 + \frac{1}{x^2} + 2$ | <b>Ans.</b> (c)          |
| 24.  | 4. If $\frac{x}{y} + \frac{y}{x} = -1$ (x, y \neq 0), the value of $x^3 - y^3$ is: |                                                                 |       |                             |              |                           |                          |
|      | (a) 1                                                                              | (b) -1                                                          | (c)   | $\frac{1}{2}$               | ( <i>d</i> ) | 0                         | <b>Ans.</b> ( <i>d</i> ) |
| 25.  | $(1 + 3x)^3$ is a example of                                                       |                                                                 |       | 2                           |              |                           |                          |
|      | (a) Monomial                                                                       | (b) Binomial                                                    | (c)   | Trinomial                   | ( <i>d</i> ) | None of these             | <b>Ans.</b> ( <i>d</i> ) |
| 26.  | If $p(x) = 2 + \frac{x}{2} + x^2 - \frac{x^3}{3}$                                  | then $p(-1)$ is:                                                |       |                             |              |                           |                          |
|      | (a) $\frac{15}{6}$                                                                 | (b) $\frac{17}{}$                                               | (c)   | 1                           | (d)          | 13                        | <b>Ans.</b> ( <i>b</i> ) |
|      | U                                                                                  | U                                                               |       | U                           | ()           | 6                         | (-)                      |
| 27.  | Zero of the polynomial p                                                           |                                                                 |       |                             |              | 1                         |                          |
|      | (a) 1                                                                              | (b) a                                                           | (c)   | 0                           | ( <i>d</i> ) | $\frac{-}{a}$             | <b>Ans.</b> (c)          |
| 28.  | If $p(x) = 7 - 3x + 2x^2$ the                                                      |                                                                 |       |                             |              |                           |                          |
|      | (a) 12                                                                             |                                                                 |       |                             | ( <i>d</i> ) | 22                        | <b>Ans.</b> (c)          |
| 29.  | If $x^2 + kx + 6 = (x + 2)$ (2)                                                    | (x + 3) for all $x$ , the $(x + 3)$                             | alue  | of k is                     |              |                           |                          |
|      | (a) 1                                                                              | (b) P1                                                          | (c)   | 5                           | ( <i>d</i> ) | 3                         | <b>Ans.</b> (c)          |
| 30.  | Zero of the polynomial p                                                           |                                                                 |       |                             |              |                           |                          |
|      | (a) $-d$                                                                           | (b) -c                                                          | (c)   | $\frac{-d}{a}$              | ( <i>d</i> ) | <b>-</b> 7                | <b>Ans.</b> (c)          |
| 31.  | Degree of the polynomia                                                            |                                                                 |       | C .                         |              |                           |                          |
|      | (a) 7                                                                              |                                                                 |       |                             | ( <i>d</i> ) | 3                         | <b>Ans.</b> (c)          |
|      | (a) /                                                                              | (0) 4                                                           | (0)   | 3.                          | (11)         | 5                         | Alis. (c)                |
|      |                                                                                    |                                                                 | SEC   | CTION - B                   |              |                           |                          |
| Very | Short Answer Type C                                                                | Questions                                                       |       |                             |              |                           | (2 Marks each)           |
| 1.   | Without actually calculate                                                         | ting the cubes, find                                            | the v | value of $75^3 - 25^3 - 50$ | 3            |                           | Ans. 281250              |
| 2.   | Evaluate (999) <sup>3</sup> .                                                      |                                                                 |       |                             | nex.         |                           | Ans. 997002999           |
| 3.   | 20 (20)                                                                            | nomial $t + 1$ is a fact                                        | or of | $2At^3 + At^2 - t - 1$      |              |                           | Ans. Yes                 |
|      |                                                                                    |                                                                 |       |                             |              |                           |                          |
| 4.   |                                                                                    |                                                                 |       |                             |              | Ans. Yes                  |                          |
| 5.   | Check whether $(x + 1)$ is a factor of $x^3 + x + x^2 + 1$ .  Ans. Yes             |                                                                 |       |                             |              |                           |                          |
| 6.   | Using factor theorem, sh                                                           |                                                                 |       |                             | <b>–</b> 6.  |                           |                          |
| 7.   | Using factor theorem, sh                                                           | now that $(x + 1)$ is a                                         | facto | or of $x^{19} + 1$ .        |              |                           |                          |

8. Without actually calculations of the cubes, find the value of  $30^3 + 20^3 - 50^3$ .

Ans. -90000

# JSUNIL TUTORIAL

### ACBSE Coaching for Mathematics and Science

9. Find the zeros of the polynomial  $3x^2 + x - 2$ .

Ans. 
$$-1$$
 and  $\frac{2}{3}$ 

**10.** Factorize:  $125x^3 + 27y^3$ .

**Ans.** 
$$(5x + 3y) (25x^2 - 15xy + 9y^2)$$

11. Factorize:  $x^2 + 3\sqrt{3}x + 6$ 

**Ans.** 
$$(x + 2\sqrt{3})(x + \sqrt{3})$$

**12.** Factorize :  $(x^4 + 4x^2 + 3)$ .

**Ans.** 
$$(x^2 + 1)(x^2 + 3)$$

13. If -1 is a zero of the polynomial  $p(x) = ax^3 + x^2 + x + 4$ , find the value of a:

Ans. 
$$a = 4$$

14. Show that y-1 is a factor of  $y^{20}-1$  and also of  $y^{21}-1$ .

**Ans.** 16

15. If 
$$2x + 3y = 8$$
 and  $xy = 4$  then find the value of  $4x^2 + 9y^2$ .  
16. If  $x^2 + \frac{1}{x^2} = 38$ , then find the value of  $\left(x - \frac{1}{x}\right)$ .

Ans. 6

17. Find the product of 
$$\left(x - \frac{1}{x}\right)$$
,  $\left(x + \frac{1}{x}\right)$ ,  $\left(x^2 + \frac{1}{x^2}\right)$  and  $\left(x^4 + \frac{1}{x^4}\right)$ 

**Ans.**  $x^8 - \frac{1}{x^8}$ 

**18.** Factorise : 
$$x^2 + \frac{x}{4} - \frac{1}{8}$$
.

**Ans.** 
$$\frac{1}{8}(2x+1)(4x-1)$$

#### SECTION - C

#### **Short Answer Type Questions**

(3 Marks each)

1. Factorise:  $(x-y)^3 + (y-z)^3 + (z-x)^3$ 

**Ans.** 3 (x - y) (y - z) (z - x)

2. Factorise by splitting the middle term :  $9(x-2y)^2-4(x-2y)-13$ 

**Ans.**  $\{9x - 18y - 13\}\ \{x - 2y + 1\}$ 

3. Find the remainder obtained on dividing  $2x^4 - 3x^3 - 5x^2 + x + 1$  by  $x - \frac{1}{2}$ .

Ans. Zero

4. Factorise :  $8x^2y^3 - x^5$ .

**Ans.**  $x^2(2y-x)(4y^2+2xy+x^2)$ 

5. Check whether (p + 1) is a factor of  $(p^{100} - 1)$  and  $(p^{101} + 1)$ .

Ans. Yes

**6.** Find the remainder when  $3x^3 - 4x^2 + 7x - 5$  is divided by (x - 3) and (x + 3)

**Ans.** 61 and –143

7. If p = 4 - q, prove that  $p^3 + q^3 + 12pq = 64$ .

Ans. Zero

**8.** If a + b = 8 and  $a^2 + b^2 = 40$  find the value of  $a^3 + b^3$ 

Ans. 224

9. If 2a = 3 + 2b prove that  $8a^3 - 8b^3 - 36ab = 27$ .

**10.** If a - b = 7,  $a^2 + b^2 = 85$  find  $a^3 - b^3$ .

Ans. 721

11. Factorise:  $(2x - y - z)^3 + (2y - z - x)^3 + (2z - x - y)^3$ .

**Ans.** 3(2x-y-2)(2y-z-x)(2z-x-y)

12. If a = 3 + b, prove that  $a^3 - b^3 - 9ab = 27$ .

**13.** If a + b = 11,  $a^2 + b^2 = 61$ , find  $a^3 + b^3$ .

Ans. 341

14. If  $x^3 + ax^2 + bx + 6$  has x - 2 as a factor and leaves a remainder 3 when divided by x - 3, find the values of a and b.

Ans. a = -3, b = -1

**15.** Find the value of  $a^3 + b^3 + 6ab - 8$  when a + b = 2.

Ans. Zero

**16.** If x + y + z = 9, then find the value of  $(3 - x)^3 + (3 - y)^3 + (3 - z)^3 - 3(3 - x)(3 - y)(3 - z)$ .

Ans. Zero

17. If x-3 is a factor of  $x^2-kx+12$  then find the value of k. Also find the other factor for this value of k.

**Ans.** k = 7, (x - 4)

**18.** Find the value of  $x^3 + y^3 + 9xy - 27$  when x - y = 3.

Ans. Zero

**19.** If a + b + c = 6 then find the value of  $(2 - a)^3 + (2 - b)^3 + (2 - c)^3 - 3(3 - a)(2 - b)(2 - c)$ .

Ans. Zero

**20.** Find the values of p and q if the polynomial  $x^4 + px^3 + 2x^2 - 3x + q$  is divisible by the polynomial  $x^2 - 1$ .

**Ans.** p = 3, q = -3

21. Factorise:  $x^2 + \frac{1}{x^2} + 2 - 2x - \frac{2}{x}$ .

Ans. 
$$\left(x+\frac{1}{x}\right)\left(x+\frac{1}{x}-2\right)$$

22. Factorise  $9x^2 + y^2 + z^2 - 6xy + 2yz - 6zx$ . Hence find its value if x = 1, y = 2 and z = 1. Ans.  $(3x - y - z)^2$  and zero

23. If the polynomial  $P(x) = x^4 - 2x^3 + 3x^2 - ax + 8$  is divided by (x - 2), it leaves a remainder 10. Find the value of a.

### SE Coaching for Mathematics and Science

#### POLYNOMIALS (Algebra)

| 24. | Without finding the cubes, factorise and find the value of : | $\left(\frac{1}{4}\right)$ | 3 + | $\left(\frac{1}{3}\right)$ | 3 - | $\left(\frac{7}{12}\right)$ | $\int_{-2}^{3} Ans. \frac{-7}{48}$ |
|-----|--------------------------------------------------------------|----------------------------|-----|----------------------------|-----|-----------------------------|------------------------------------|
|-----|--------------------------------------------------------------|----------------------------|-----|----------------------------|-----|-----------------------------|------------------------------------|

- **25.** Using suitable identity evaluate  $(-32)^3 + (18)^3 + (14)^3$ . Ans. -24192
- **26.** Factorize:  $64a^3 27b^3 144a^2b + 108ab^2$ . **Ans.**  $(4a - 3b)^3$
- **27.** Find the value of  $x^3 + y^3 12xy + 64$  when x + y = -4. Ans. Zero
- **28.** If x = 2y + 6 then find the value of  $x^3 8y^3 36xy 216$ . Ans. Zero
- **29.** Factorize:  $27 (x + y)^3 8(x y)^3$ . **Ans.**  $(x + 5y) (19x^2 + 7y^2 + 10xy)$
- **30.** Factorise :  $x^3 + 6x^2 + 11x + 6$ . **Ans.** (x + 1) (x + 2) (x + 3)
- 31. What are the possible expressions for the dimensions of the cuboid whose volume is given below? Volume =  $12ky^2 + 8ky - 20k$ . **Ans.** 4k, (y-1), (3y+5)
- **32.** Factorize:  $8a^3 b^3 12a^2b + 6ab^2$ **Ans.**  $(2a - b)^3$
- 33. If  $x = \frac{-1}{3}$  is a zero of the polynomial  $p(x) = 27x^3 ax^2 x + 3$  then find the value of a. **Ans.** a = 21
- **34.** Factorize  $(x-3y^2)^3 + (3y-7z)^3 + (7z-x)^3$ . **Ans.**  $3(x-3y^2)(3y-7z)(7z-x)$
- **35.** Factorise:  $(ax + by)^2 + (ay bx)^2$ . **Ans.**  $(a^2 + b^2)(x^2 + y^2)$
- 36. If  $x + \frac{1}{x} = 7$  then find the value of  $x^3 + \frac{1}{x^3}$ . Ans. 322
- 37. If  $x \frac{1}{x} = 3$  then find the value of  $x^3 \frac{1}{x^3}$ . Ans. 36

#### SECTION - D

#### Long Answer Type Questions

Ans.  $\frac{\sqrt{53} + 7}{2}$ 1. If  $x^2 + \frac{1}{x^2} = 51$ , find x

- 2. Find the values of m and n so that the polynomial  $f(x) = x^3 6x^2 + mx n$  is exactly divisible by (x 1) as well as **Ans.** m = 11, n = 6
- 3. Find the value of  $34 \times 36$  using suitable identity.
- Ans. 1224 **Ans.**  $(x - y)(x + y)(x^2 + y^2)(x^4 + y^4)$ 4. Factorise  $x^8 - y^8$ .
- Ans.  $\left(3p-\frac{1}{6}\right)^3$ 5. Factorise:  $27p^2 - \frac{1}{216} - \frac{9}{2}p^2 + \frac{1}{4}p$
- (a)  $x^3 + y^3 + z^3 3xyz = \frac{1}{2}(x + y + z)[(x y)^2 + (y y)^2 + (z x)^2]$ (b) Factorise:  $64x^3 + 125y^3 - 64z^3 + 240xyz$ .
- **Ans.**  $(4x + 5y 4z)[16x^2 + 25y^2 + 16z^2 20xy + 20yz + 16xz]$
- 7. Verify  $x^3 + y^3 + z^3 3xyz = (x + y + z) [(x y)^2 + (y z)^2 + (z x)^2]$  and factor is  $64x^3 + 125y^3 64z^3 + 240$ .
- **Ans.**  $(4x + 5y 4z) [16x^2 + 25y^2 + 16z^2 20xy + 20yz + 16xz]$
- 8. Given a polynomial  $p(x) = x^2 5x + 4$ .
- Ans. -2 (a) Find the value of the polynomial p(x) at x = 2. (b) Check whether x is a factor of p(x). Ans. No
- (c) Factorise p(x). **Ans.** (x-4)(x-1)
- 9. Factorise:  $(x^2 2x)^2 2(x^2 2x) 3$ . **Ans.**  $(x-1)^2(x+1)(x-3)$
- 10. If  $p(x) = x^3 ax^2 + bx + 3$  leaves a remainder -19 when divided by (x + 2) and a remainder 17 when divided by (x-2), prove that a+b=6
- 11. Factorise:  $2x^3 + 9x^2 + 10x + 3$ . **Ans.** (x + 1)(2x + 1)(x + 3)
- 12. If both (x-2) and (2x-1) are factors of  $ax^2 + 5x + b$ , show that a-b=0.
- 13. The polynomial  $ax^3 + 3x^2 3$  and  $2x^3 5x + a$  when divided by x 4 leave the same remainder in each case. Find the value of a. Ans. a=1

(4 Marks each)

### BSE Coaching for Mathematics and Science

| 14. | The polynomials $p(x) = ax^3 + 4x^2 + 3x - 4$ and $q(x) = x^3 - 4x + a$ leave the s | ame remainder when divided by $x - 3$ . |
|-----|-------------------------------------------------------------------------------------|-----------------------------------------|
|     | Find the remainder when $p(x)$ is divided by $(x-2)$ .                              | <b>Ans.</b> $a = -1$ , $p(2) = 10$      |

**15.** Factorise :  $2x^3 - 3x^2 - 17x + 30$ .

**Ans.** (x-2)(x+3)(2x-5)

16. The volume of a cube is given by the polynomial  $p(x) = 8x^3 - 36x^2 + 54x - 27$ Find the possible expression for the sides of the cube.

Ans. Length = (2x - 3)

17. The volume of a cube is given by the polynomial:  $p(x) = 27x^3 + 54x^2 + 36x + 8.$ 

Find the possible expression for the sides of the cube.

Ans. [3x + 2] units

- **18.** Using factor theorem, factorise the polynomial:  $x^4 + 3x^3 + 2x^2 3x 3$ **Ans.**  $(x-1)(x+1)(x^2+3x+3)$
- **19.** Factorise:  $(x-a)^3 + (x-b)^3 + (x-c)^3 3(x-a)(x-b)(x-c)$ . Ans.  $(3x-a-b-c)(a^2+b^2+c^2-ab-bc-ac)$
- 20. Without actual division, show that the polynomial  $2x^4 5x^3 + 2x^2 x + 2$  is exactly divisible by  $x^2 3x + 2$ .

**Ans.** P(1) = 0 and P(2) = 0

**Ans.** (x-1)(x-2)(x+2)(x-5)

- **21.** Factorize:  $(x^2 3x)^2 8(x^2 3x) 20$ .
- **22.** If a + b + c = 9 and ab + bc + ca = 40. Find the value of  $a^2 + b^2 + c^2$ .

Ans. 1

23. Simplify:  $\frac{(a^2 - b^2)^3 + (b^2 - c^2)^3 + (c^2 - a^2)^3}{(a - b)^3 + (b - c)^3 + (c - a)^3}.$ **Ans.** (a + b) (b + c) (c + a)

- **24.** Without actual division, prove that  $(2x^4 6x^3 + 3x^2 + 3x 2)$  is exactly divisible by  $(x^2 3x + 2)$ .
- **25.** If  $a^2 + b^2 + c^2 = 250$  and ab + bc + ac = 3. Find the value of a + b + c.

Ans. 16

**26.** If a + b + c = 12,  $a^2 + b^2 + c^2 = 90$ , find the value of  $a^3 + b^3 + c^3 - 3abc$ .

Ans. 756

- **27.** If (x + y + z) = 0, then prove that  $(x^3 + y^3 + z^3) = 3xyz$ .
- 28. The Polynomials  $ax^3 3x^2 + 4$  and  $3x^2 5x + a$  when divided by (x 2) leave the remainders p and q respectively. If p - 2q = a, find the value of a. Ans. a=2
- **29.** If x + y + z = 1, xy + yz + zx = -1 and xyz = -1 find the value of  $x^3 + y^3 + z^3$ .

Ans. 1

**30.** Factorize :  $ax^2 + (4a^2 - 3b)x - 12ab$ .

- **Ans.** (x + 4a) (ax 3b)
- 31. Find the value of  $(x-a)^3 + (x-b)^3 + (x-c)^3 3(x-a)(x-b)(x-c)$ , if a+b+c=3x.
  - Ans. Zero **Ans.** 2  $(3x^2 + 1)$

**32.** Factorize  $(x+1)^3 - (x-1)^3$ .

**Ans.**  $(x-3)(x+3)(x^2+3x+9)(x^2-3x+9)$ 

**33.** Factorize :  $x^6 - 729$ .

34. Prove that:

- - $2x^3 + 2y^3 + 2z^3 6xyz = (x + y + z)[(x y)^2 + (y z)^2 + (z x)^2]$  hence evaluate  $2(7)^3 + 2(9)^3 + 2(13)^3 6(7)(9)(13)$ .
- **35.** Prove that  $(x + y)^3 (x y)^3 6y(x^2 y^2) = 8y^3$ .
- 36. Using factor theorem show that  $x^2 + 5x + 6$  is a factor of:  $x^4 + 5x^3 + 9x^2 + 15x + 18$ .
- 37. Factorize:  $27a^3 + \frac{1}{64b^3} + \frac{27a^2}{4b} + \frac{9a}{16b^2}$ .

Ans.  $\left[3a + \frac{1}{4b}\right]^3$ 

38. If x and y be two positive real numbers such that  $8x^3 + 27y^3 = 730$  and  $2x^2y + 3xy^2 = 15$  then evaluate 2x + 3y.

Ans. 1624

- **39.** Factorize:  $2\sqrt{2}a^3 + 8b^3 27c^3 + 18\sqrt{2}abc$  **Ans.**  $(\sqrt{2}a + 2b 3c)(2a^2 + 4b^2 + 9c^2 2\sqrt{2}ab + 6bc + 3\sqrt{2}c)$
- **40.** (i) Multiply  $9x^2 + 25y^2 + 15xy + 12x 20y + 16$  by 3x 5y 4 using suitable identity.

**Ans.**  $[27x^3 - 125y^3 - 64 - 180xy]$ 

- (ii) Factorise:  $a^2 + b^2 2(ab ac + bc)$ . **Ans.** (a - b) (a - b + 2c)
- **Ans.**  $a(a^2 + b^2)(a^4 a^2b^2 + b^4)$ **41.** Factorise  $a^7 + ab^6$ . 42. Find the value of 'a' if (x-a) is a factor of  $x^5 - a^2x^3 + 2x + a + 3$ , hence factorise  $x^2 - 2ax - 3$ .

Ans. a = -1 and (x + 3)(x - 1) are factors.

**43.** If x - 2y = 11 and xy = 8 find the value of  $x^3 - 8y^3$ .

Ans. 1859

# ACBSE Coaching for Mathematics and Science



#### **CHAPTER TEST: POLYNOMIALS**

Time 1½ hrs M.M. 35

#### Instructions

• No. 1 to 5 Carry 1 Mark each.

No. 9 to 12 Carry 3 Marks each.

• No. 6 to 8 Carry 2 Marks each.

• No. 13 to 15 Carry 4 Marks each.

1. If a+b+c=0, then find value of:  $\frac{a+b}{c} + \frac{b+c}{a} + \frac{c+a}{b}$ .

2. How many zeroes a constant polynomial have ?

3. Number zero cannot be a zero of any polynomial.

(T/F)

4. There are at most two distinct zeroes of a quadratic polynomial.

(T/F)

5. If  $\frac{x}{y} + \frac{y}{x} = -1$ ,  $x \ne 0$ ,  $y \ne 0$ , then find value of  $x^3 - y^3$ .

**6.** If  $x^2 + \frac{1}{x^2} = 6$ , then find value of  $x^3 - \frac{1}{x^3}$ 

**7.** Factorize :  $x^4 + x^2 + 1$ .

**8.** Find the value of a, for which  $(x^2 - ax + 1)$  is divisble by (x - 1).

9. Give possible length, breadth and height of a cubid of volume  $(125x^4 - 64y^3x)$ .

**10.** If (x + a) is a factor of polynomial :  $x^2 + px + q$  and  $x^2 + mx + n$ , prove that  $a = \frac{n - q}{m - p}$ .

11. Find  $\alpha$  and  $\beta$  if (x + 1) and (x + 2) are factors of  $x^3 + 3x^2 - 2\alpha x + \beta$ .

12. Without actual division, prove that :  $2x^4 + x^3 - 14x^2 - 19x - 6$  is exactly divisible by  $x^2 + 3x + 2$ .

**13.** Factorize :  $2x^3 - 3x^2 - 17x + 30$ .

**14.** If  $\sqrt{m} + \sqrt{n} - \sqrt{p} = 0$ , then prove that m + n - p = 4mn.

**15.** Find the square root of :  $x^4 - 6x^3 + 13x^2 - 12x + 4$ .



1. -3

2. None

3.

4. T

5. Zero

6. 2

7.  $(x^2 - x + 1)(x^2 + x + 1)$ 

8. 2

**9.** x(5x - 4y),  $(25x^2 + 20xy + 16y^2)$ 

11.  $\alpha = -1$ ,  $\beta = 0$ 

**13.** (x-2)(x+3)(2x-5)

15.  $x^2 - 3x + 2$