D.A.V. PUBLIC SCHOOL, NEW PANVEL

Plot No. 267, 268, Sector-10, New Panvel, Navi Mumbai-410206 (Maharashtra).
Phone 022-27468211, 27451793, Tel-fax-27482276,
E-mail - davnewpanvel@gmail.com, www.davnewpanvel.com

PRACTICE PAPER FOR SUMMATIVE ASSESSMENT - I
2014-2015
STD:- IX

Sub:- Mathematics
Time:- 3 Hours
Marks:- 90

General Instructions:

- All questions are compulsory.
- The question paper consists of 31 questions divided into 4 sections A,B,C,D.
i) Section A comprises 4 questions of 1 mark each
ii) Section B comprises 6 questions of 2 marks each
iii) Section C comprises 10 questions of 3 marks each
iv) Section D comprises 11 questions of 4 marks each
- Internal choice has been provided in some questions, you have to attempt only one of the alternatives in all such questions.

SECTION - A

Q.1) Which of the following numbers is irrational?
a) $\sqrt{\frac{4}{9}}$
b) $\frac{\sqrt{12}}{\sqrt{3}}$
c) $\sqrt{8}$
d) $\sqrt{81}$
Q.2) Which of the following expressions is a polynomial?
a) $x+\frac{1}{x}$
b) $\sqrt{x}+x+x^{2}$
C) $\sqrt{2} x+x^{3}+3 x^{2}$
d) $x^{2}+x^{-2}+2$
Q.3) If $A B=x+3, B C=2 x$ and $A C=4 x-5$, if B lie on $A C$, then value of x is
a) 8
b) 5
c) 2
d) 3
Q. 4) The semi perimeter of an equilateral triangle of side $2 a$ is
a) $\frac{3 a}{2}$
b) $\frac{a}{2}$
c) $\frac{2 a}{3}$
d) $3 a$

SECTION - B
Q.5) Find three rational numbers between -2 and -3 .
Q.6) Find the remainder when $x^{3}-a x^{2}+6 x-a$ is divided by $x-a$.
Q.7) Determine whether $(x-2)$ is a factor of the polynomial?

$$
3 x^{4}+4 x^{3}-10 x^{2}-5 x-28
$$

Q.8) Factorise: $x^{2}-24 x-180$
Q.9) In the given figure, if $A D=B C$. Prove that $A C=B D$

OR
Does Euclid's fifth postulate imply the existence of parallel lines? Explain.
Q.10) State the quadrants and axis on which the following points lie:
(i) $(-3,2)$
(ii) $(5,4)$
(iii) $(-4,-2)$
(iv) $(0,-3)$

SECTION - C

Q.11) If $a=9-4 \sqrt{5}$, find the value of $a^{2}+\frac{1}{a^{2}}$

OR
Rationalise the denominator: $\frac{2 \sqrt{6}-\sqrt{5}}{3 \sqrt{5}-2 \sqrt{6}}$
Q.12) Express $32.12 \overline{35}$ in the form of $\frac{p}{q}$.
Q.13) Factorise the polynomial: $8 x^{3}-(2 x-y)^{3}$.
Q.14) Give possible expressions for the length and breadth of the rectangle, in which area is given. Area: $35 y^{2}+13 y-12$
Q.15) In the given figure $P O Q$ is a line. Ray $O R$ is perpendicular to line $P Q$. $O S$ is another ray lying between rays OP and OR. Prove that
$\angle R O S=\frac{1}{2}(\angle Q O S-\angle P O S)$

Q.16) It is given that $\angle X Y Z=64^{\circ}$ and $X Y$ produced to a point P. Draw a figure from the given information. If ray $Y Q$ bisects $\angle Z Y P$, find $\angle X Y Q$ and reflex $\angle Q Y P$

OR
If two parallel lines are intersected by a transversal, then prove that the Bisectors of any two alternate angles are parallel.
Q.17) In the given figure, $\mathrm{AC}=\mathrm{AE}, \mathrm{AB}=\mathrm{AD}$ and $\angle B A D=\angle E A C$. Show that $\mathrm{BC}=\mathrm{DE}$

Q.18) It is given that $A B=B C$ and $A D=E C$. Prove that : $\triangle A B E \cong \triangle C B D$

Q.19) $B E$ and CF are two equal altitudes of a $\Delta A B C$. Using RHS congruence rule, prove that the triangle $A B C$ is an isosceles triangle

Q.20) In the following figure, $\angle \mathrm{R}>\angle \mathrm{Q}$, PS is the bisector of $\angle \mathrm{QPR}$ and $\mathrm{PT} \perp \mathrm{RQ}$. Show that $\angle \mathrm{TPS}=\frac{1}{2}(\angle \mathrm{R}-\angle \mathrm{Q})$.

Q.21) Find a and b , if $\frac{5+2 \sqrt{3}}{7+4 \sqrt{3}}$, $=a+b \sqrt{3}$
Q.22) Simplify : $\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+2}+\frac{1}{2+\sqrt{5}}$
Q.23) Verify: $x^{3}+y^{3}+z^{3}-3 x y z=\frac{1}{2}(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right]$

OR
Factorise: $x^{3}+2 x^{2}-5 x-6$
Q.24) If $x+y+z=1, x y+y z+z x=-1$ and $x y z=-1$, find the value of $x^{3}+y^{3}+z^{3}$
Q.25) Find m and n if $(x+2)$ and $(x+1)$ are factors of $x^{3}+3 x^{2}-2 m x+n$
Q.26) Plot the points $A(4,0), B(4,4), C(-3,0)$. Join $A B$ and $A C$, Find the area of $\triangle A B C$.
Q.27) Prove that two triangles are congruent if two angles and included side of one triangle are equal to two angles and included side of other triangle.

OR
Prove that the angles opposite to equal sides of an isosceles triangle are equal.
Q.28) In given figure the side QR of $\triangle \mathrm{PQR}$ is produce to point S .If the bisector of $\angle P Q R$ and $\angle P R S$ meet at point T . Then prove that $\angle Q T R=\frac{1}{2} \angle Q P R$.

Q.29) In the given figure, bisectors of the exterior angles B and C formed by producing sides $A B$ and $A C$ of $\triangle A B C$ intersect each other at the point O.
Prove that: $\angle B O C=90^{\circ}-\frac{1}{2} \angle A$

Q.30) $A B$ and $C D$ are respectively the smallest and longest sides of quadrilateral $A B C D$. Show that: $\angle A>\angle C$ and $\angle B>\angle D$.

Q.31) A rhombus shaped field has green grass for 18 cows to graze. If each side of the rhombus is 30 m and its longer diagonal is 48 m , how much area of grass field will each cow be getting?

