SUMMATIVE ASSESSMENT 1 (2014 – 15)

CLASS: IX

M.M 90

Time: 3 hours

SUBJECT: MATHEMATICS

Syllabus: Number systems, Polynomials, Coordinate Geometry, Euclid's Geometry, Triangles, Lines and Angles, Heron's Formula

GENERAL INSTRUCTIONS:

- · All questions are compulsory.
- · The question paper is divided into four sections A, B, C, D
- Section A contains 8 questions of 1 mark each, Section B: 6 questions of 2 marks each, Section C has 10 questions of 3 marks each and Section D contains 10 questions of 4 marks each.
- Use of calculators is not allowed.

Section A

Q1. A point is at a distance of 4 units above the x -axis and 3 units to the left of the y -axis.

Which of these could be its co-ordinates?

- (a) (3, 4)
- (b) (-3, 4)
- (c) (4, -3)
- (d) (4, 3)

Q2 If $P(x) = x^2 - 2\sqrt{2}x + 1$ then $P(2\sqrt{2})$ is equal to:

(a) 0

(b) 1

- (c) 4v2
- (d) $8\sqrt{2}+1$

Q3 The area of an equilateral triangle is $16\sqrt{3}$ cm² then its perimeter is :

(a) 48 cm

(b) 24 cm

- (c) 12 cm
- (d) 306 cm

Q4 In the given figure ABC is an equilateral triangle and BDC is an isosceles right triangle , right angled at D. \angle ABD equals :

- (a) 45°
- (b) 60°
- (c) 105°
- (d) 120°

SECTION B

Q5. If
$$x = 7 + \sqrt{40}$$
, find the value of $\sqrt{x} + \frac{1}{\sqrt{x}}$

- Q6. Evaluate the products without multiplying directly:
- a) 103 × 107 102
- b) $(25)^3 (75)^3 + (50)^3$
- Q7. Find the value of a for which (x-1) is factor of the polynomial $a^2x^3 4ax + 4a 1$.
- Q8. Represent 0.36 in the simplest form of a rational number.
- Q9. In the given figure find the value of x

Q10. In the given figure, ABC is an equilateral triangle. The coordinates of vertex B are (3,0). Find the coordinates of vertices A and C.

SECTION C

Q11 Simplify the following: $\frac{7+3\sqrt{5}}{3+\sqrt{5}} - \frac{7-3\sqrt{5}}{3-\sqrt{5}}$

ACBSE Coaching for Mathematics and Science

In the given figure, if AB||CD, $\angle APQ = 50^{\circ}$ and $\angle PRD = 127^{\circ}$, find x and y.

Q13 Determine the value of $x^3 - 8y^3 - 36xy - 216$, given that x - 2y = 6.

Q 14 If (x-2) and $(x-\frac{1}{2})$ are factors of px^2-5x+r . Show that p=r.

Q 15 In the given figure DE | BC and MF | AB. Find (i) ∠ADE + ∠MEN (ii)∠BDE (iii)∠BLE.

Q16 Lines AB and CD intersect at O. If $\angle POB = 90^{\circ}$ and a:b=2:3, find c.

Q17. Factorise the following:

a)
$$\sqrt{2}x^2 + 3x + \sqrt{2}$$

b)
$$8x^3 + y^3 + 27z^3 - 18xyz$$
.

Q18. In the given figure, ΔABC and ΔABD are such that

AD = BC,
$$\angle 1 = \angle 2$$
 and $\angle 3 = \angle 4$.

Prove that BD = AC.

CBSE Coaching for Mathematics and Science

Q19 Prove that the bisectors of two adjacent supplementary angles form a right angle.

Q20 ABC is right triangle, right angled at B and \angle BCA = $2\angle$ BAC. Prove that AC = 2BC.

SECTION D

Q21 On a graph paper plot the points A(3,3) and B(-2, -4).

Identify and plot the mirror images of these points in i) x axis and ii) y axis

Q22. If the polynomial $kx^3 + 3x^2 - 13$ and $2x^3 - 5x + k$ when divided by x - 2 leaves

the same remainder. Find the value of k.

Q23 If
$$x = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}$$
 and $y = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$, find $x^2 + y^2$.

Q24. Given that 2 and $\left(\frac{-1}{3}\right)$ are the zeros of the polynomial $3x^3 - 2x^2 - 7x - 2$. Find the third zero of the polynomial.

Q25 If $ax^2 + 2a^2x + b^3$ is exactly divisible by (x + a), prove that a = b or $a^2 + ab + b^2 = 0$.

Q26 In the given figure, QT \perp PR, \angle TQR = 40° and \angle SPR = 30°. Find the values of x, y and z.

Q27 In the given figure XY||UV. Find the values of x for which AB||CD.

Also find ZDPX, ZQRV, ZSRB and ZPQR.

JSUNIL TUTORIAL

ACBSE Coaching for Mathematics and Science

Q28 In the given figure, AB = AC, D is a point of the interior of $\triangle ABC$ such that $\angle DBC = \angle DCB$. Prove that AD bisects $\angle BAC$ of $\triangle ABC$.

Q29 In the given figure, B is the mid point of AC, $\angle A = \angle C$ and $\angle ABD = \angle CBE$. Prove that CD = AE.

Q30. Without actual division show that $(x^3 - 3x^2 - 13x + .15)$ is exactly divisible by $(x^2 + 2x - 3)$.

31. A triangular park in a school has dimensions 50 m, 45 m and 55 m. Find the cost of planting grass in the park at the rate of Rs. 4 per sq m. ($\sqrt{2}$ = 1.41)

What is the importance of greenery in our environment?