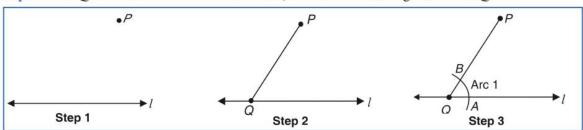


Practical Geometry

You have already learnt how to draw a line segment of given length, perpendicular to a given line segment, angles, circle etc., in your earlier classes. Here you will learn how to draw parallel lines and triangles.

Construction of a line parallel to a given line through a point not on the line

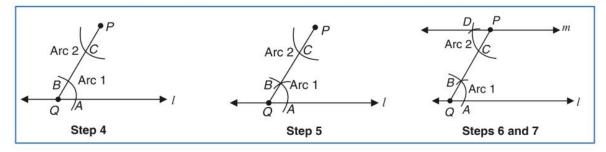


Construction has to be done using ruler and compasses only.

Step 1: Take a line l and a point P outside l.

Step 2: Take any point Q on the line l and join Q to P.

Step 3: With Q as centre and a convenient radius, draw an arc 1 cutting l at A and PQ at B.


Step 4: Now, with P as centre and the same radius as in step 3, draw an arc 2 cutting PQ at C.

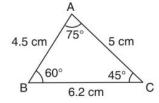
Step 5: Place the steel point of the compasses at A and adjust the opening so that the pencil point is at B.

Step 6: With the same opening as in step 5 and with C as centre, draw an arc cutting the arc 2 at D.

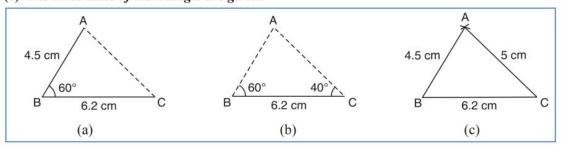
Step 7: Draw a line through P and D.

Then line m is the required line parallel to line l and passing through the given point P.

EXERCISE 12 (A)


- 1. Draw a line segment AB = 6.8 cm. Take any point P outside it. Using ruler and compasses draw a line through P parallel to AB.
- 2. Draw any $\triangle ABC$. Through A, draw the line parallel to BC.
- 3. Draw a line segment of length 6.3 cm. Draw another line parallel to it at a distance 3 cm from it. [Hint. Suppose AB is the line segment drawn by you. Take any point P on AB. Through P, draw a line segment PL, perpendicular to the line AB such that PL = 3 cm. Now, draw the line through L, parallel to AB.]
- **4.** Draw any triangle ABC and let D be the mid-point of AB. Using ruler and compasses draw the line through D parallel to BC to meet AC in E. Measure DE, AE and EC. Do you find that AE = EC and $DE = \frac{1}{2}BC$?

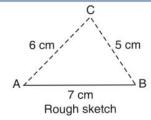
CONSTRUCTION OF TRIANGLES


Elements of a Triangle

Study $\triangle ABC$. It has 3 sides and 3 angles. We say that it has a total of 6 elements *viz*. three angles and three sides.

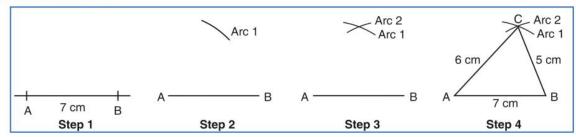
A triangle can be constructed if three of its six elements are given. However, a triangle is only fixed (*i.e.*, it has a definite size) if any of these three conditions are fulfilled:

- (a) Two sides and the included angle are given.
- (b) One side and two angles are given.
- (c) The three sides of the triangle are given.



A triangle is not fixed if

- (a) 3 angles are given, or
- (b) two sides and a non-included angle are given.


1. Constructing triangles having been given the lengths of the three sides (SSS Construction)

- Ex. 1. Construct a triangle ABC with AB = 7 cm, BC = 5 cm and AC = 6 cm. (Three sides).
 - **Sol.** First draw a rough sketch of the triangle and put in all the given measurements.

Practical Geometry

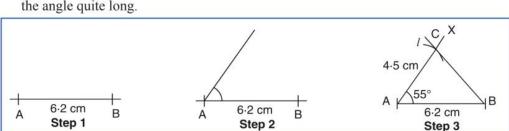
Steps of Construction:

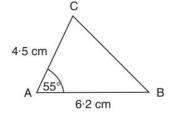
- **Step 1.** Draw a line and mark two points A and B on it such that AB = 7 cm.
- **Step 2.** Open your compasses to a length of 6 cm on the ruler and with A as centre draw an arc 1.
- **Step 3.** Now, open your compasses to a length 5 cm on the ruler and with *B* as centre draw an arc 2 to cut the first one.
 - **Step 4.** Label as C the point where the two arcs intersect. Join A to C and B to C.

Then the triangle ABC so obtained is the required triangle.

EXERCISE 12 (B)

Construct the following triangles:


- 1. \triangle ABC in which AB = 7 cm, AC = 6 cm, BC = 9 cm. Measure $\angle A$, $\angle B$ and $\angle C$.
- **2.** $\triangle PQR$ in which PQ = 5.5 cm, QR = 6.5 cm, RP = 5 cm.
- 3. $\triangle XYZ$ in which XZ = 8.4 cm, XY = 6.8 cm, YZ = 7.5 cm.
- 4. $\triangle DEF$ in which DE = 8 cm, DF = 7.2 cm, EF = 6.3 cm.
- 5. ΔLMN in which LN = 7 cm, NM = 5.5 cm, LM = 6.4 cm.


2. Constructing triangles having been given two sides and the angle between the two sides (Included angle) (SAS construction)

- Ex. 2. Construct a triangle with AB = 6.2 cm, AC = 4.5 cm, $\angle BAC = 55^{\circ}$.
 - **Sol.** First draw a rough sketch of $\triangle ABC$ and put in all the measurements that are given.

Steps of Construction:

- **Step 1.** Draw one of the sides whose length you know. We draw AB = 6.2 cm
- **Step 2.** Using your protractor draw an angle of 55° at *A*. Make the arm of the angle quite long.

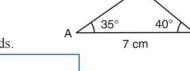
Step 3. Use your compasses to measure the length of *AC*, *i.e.*, 4.5 cm on your ruler and with the point of your compasses at *A*, draw an arc 1 to cut the arm of the angle. This is the point *C*. Join *C* and *B*.

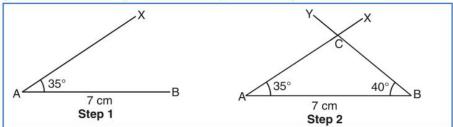
The triangle ABC so obtained is the required triangle.

EXERCISE 12 (C)

Construct the following triangles and measure the third side:

- 1. \triangle ABC in which AB = 6 cm, AC = 8 cm, \angle BAC = 50°.
- **2.** $\triangle PQR$ in which PQ = 5.5 cm, QR = 6.5 cm, $\angle Q = 40^{\circ}$.
- 3. $\triangle XYZ$ in which $\angle XYZ = 70^{\circ}$, XY = 7.2 cm, YZ = 8.2 cm.
- 4. \triangle DEF in which DE = 6.8 cm, $\angle E = 48^{\circ}$, EF = 7.9 cm.
- 5. $\triangle LMN$ in which $\angle N = 73^{\circ}$, LN = 5.7 cm, MN = 6.8 cm.


3. Constructing triangles having been given one side and two angles (ASA construction)


Ex. 3. Construct a $\triangle ABC$ given AB = 7 cm, $\angle A = 35^{\circ}$, $\angle B = 40^{\circ}$. Calculate the third angle.

Sol. First make a rough sketch of Δ *ABC* and put all the given measurements in your sketch.

Steps of Construction:

Step 1. Draw the line segment AB making it 7 cm long. Label its ends.

Step 2. Using your protractor, draw an angle BAX of 35° at A.

Step 3. Use your protractor to draw the second angle ABY equal to 40° at the point B.

Let AX and BY meet at C.

Then $\triangle ABC$ is the required triangle.

Calculation:
$$\angle C + \angle A + \angle B = 180^{\circ}$$
 (angle sum of a Δ) or $\angle C + 35^{\circ} + 40^{\circ} = 180^{\circ}$

$$\Rightarrow$$
 $\angle C + 75^{\circ} = 180^{\circ}$

$$\Rightarrow$$
 $\angle C = 180^{\circ} - 75^{\circ} = 105^{\circ}$

EXERCISE 12 (D)

Construct the following triangles; calculate the third angle in each triangle and measure this angle to check the accuracy of your construction.

- 1. $\triangle ABC$ in which AB = 7.4 cm, $\angle BAC = 47^{\circ}$, $\angle ABC = 68^{\circ}$.
- 2. $\triangle PQR$ in which PQ = 6 cm, $\angle Q = 50^{\circ}$, $\angle P = 60^{\circ}$.
- 3. $\triangle XYZ$ in which YZ = 5.8 cm, $\angle Y = 100^{\circ}$, $\angle Z = 40^{\circ}$. Draw the perpendicular from Y to XZ.
- 4. $\triangle BCD$ in which $\angle B = 105^{\circ}$, BC = 8.2 cm, $\angle C = 45^{\circ}$.
- 5. Draw $\triangle FGH$ in which $\angle G = 80^{\circ}$, $\angle H = 55^{\circ}$ and GH = 5.6 cm.

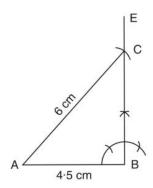
Draw the perpendicular bisector of side GH.

Practical Geometry

4. Constructing a Right Triangle (RHS)

To construct a right triangle when its hypotenuse and one side are given.


Ex. 4. Construct a right $\triangle ABC$, right angled at B, in which AC = 6 cm and AB = 4.5 cm.


Sol. First draw a rough sketch of $\triangle ABC$ showing all measurements.

Steps of Construction:

- **Step 1.** Draw a line segment AB = 4.5 cm and at $B ext{ draw } BE \perp AB$.
- **Step 2.** With A as centre and radius = 6 cm draw an arc to cut BE at C.
- **Step 3.** Join A to C.

Then right angled $\triangle ABC$ is the required triangle.

EXERCISE 12 (E)

Construct a right triangle:

- 1. $\triangle ABC$ right angled at B, in which AC = 10 cm, AB = 8 cm.
- 2. $\triangle PQR$ right angled at R, in which hypotenuse PQ = 10 cm, side PR = 7 cm.
- 3. $\triangle LMN$ in which MN = 5.9 cm, LM = 8.4 cm and $\angle N = 90^{\circ}$.
- **4.** ΔRST right angled at T in which ST = 6.2 cm and SR = 8.3 cm.