Section A-1 marks each

Q1. If in two triangles $A B C$ and $P Q R, A B / Q R=B C / P R=C A / P Q$, then
(A) $\triangle \mathrm{PQR} \sim \triangle \mathrm{CAB}(\mathrm{B}) \triangle \mathrm{PQR} \sim \triangle \mathrm{ABC}$ (C) $\triangle \mathrm{CBA} \sim \triangle \mathrm{PQR}$ (D) $\triangle \mathrm{BCA} \sim \triangle \mathrm{PQR}$

Q2. In $\triangle A B C$, $D E$ II $B C$ intersecting $A B$ at D and $A C$ at $E, A D=1 \mathrm{~cm}, D B=3 \mathrm{~cm}, A E=1.5 \mathrm{~cm}$, $\mathrm{AC}=$?
(A) 6 cm (B) 10 cm
(C) 8 cm
(D) None of these

Q3. In $\triangle A B C, D$ is a point on $A B$ and E is a point on $A C, D E$ is joined. $A D=2, D B=3, A E=3$ $\mathrm{cm}, \mathrm{EC}=4.5$. Is DE II BC ?

Q4. The lengths of the diagonals of a rhombus are 16 cm and 12 cm . Then, the length of the side of the rhombus is
(A) 9 cm (B) 10 cm (C) 8 cm (D) 20 cm

Q5. In triangles ABC and $\mathrm{DEF}, \angle \mathrm{B}=\angle \mathrm{E}, \angle \mathrm{F}=\angle \mathrm{C}$ and $\mathrm{AB}=3 \mathrm{DE}$, Then, the two triangles are
(A) congruent but not similar (B) similar but not congruent
(C) neither congruent nor similar (D) congruent as well as similar
Q. 6 The perimeters of two similar triangles $A B C$ and $P Q R$ are respectively 36 cm and 48 cm . If $P Q=12 \mathrm{~cm}$, then $A B=$
(a) 16 cm
(b) 20 cm
(c) 25 cm
(d) 15 cm
Q. 7 In a $\triangle A B C, A D$ is the bisector of $\angle B A C$. If $A B=12 \mathrm{~cm}, A C=10 \mathrm{~cm}$ and $B D=6 \mathrm{~cm}$, then DC =
(a) 22.6 cm
(b) 5 cm
(c) 7 cm
(d) 9 cm
Q. 8 ABC and $B D E$ are two equilateral triangles such that D is the midpoint of $B C$. Ratio of the areas of triangles $A B C$ and $B D E$ is
(a) $2: 1$
(b) $1: 2$
(c) $4: 1$ (d) $1: 4$
Q. 9 Which False?
(a) All quadrilateral triangles are similar. (b) All circles are similar.
(c) All isosceles triangles are similar. (d) All $30^{\circ} .60^{\circ} .90^{\circ}$ triangles are similar.
Q. 10 Two isosceles triangles have equal vertical angles and their areas are in the ratio16:25. Then the ratios of their corresponding heights are
(a) $16: 25$ (b) $256: 625$ (c) $4: 5$ (d) $3: 5$
Q. 11 If $\triangle A B C \sim \triangle E D F$ and $\triangle A B C$ is not similar to $\triangle D E F$, then which of the following is not true?
(a) $B C . E F=A C . F D$
(b) AB.EF=AC.DE
(c) $B C . D E=A B . E F$ (d) $B C . D E=A B . F D$
Q. 12 Sides of two similar triangles are in the ratio of $4: 9$. Areas of these triangles are in the ratio.
(a) $2: 3$
(b) $4: 9$
(c) $81: 16$
(d) $16: 81$
Q. 13 If $\triangle A B C$, and $\triangle D E F$ are similar triangles such that $\angle 430$ and $\angle 870$ then $\angle C=$
(a) 500
(b) 600
(c) 700
(d) None of these
Q. 14 Two triangles are similar but not congruent and the lengths of the sides of the first are $6 \mathrm{~cm}, 11 \mathrm{~cm}$ and 12 cm . The ratio of corresponding sides of first and second triangle is $1: 2$.
What is the perimeter of the second triangle:
(a) 29 cm
(b) 53 cm
(c) 58 cm (d) 56 cm
Q. 15 For the above triangle, if $A D=z, D B=z-2, A E=z+2$ and $E C=z-1$, then $z=$
(a) 2
(b) 3
(c) 4
(d) 1
Q. 16 In an isosceles triangle $A B C$, If $A C=B C$ and $A B 2=2 A C 2$, then $\angle C=$
(a) 450 (b) 600
(c) 900
(d) 300
Q. 17 In triangles ABC and $\mathrm{DEF}, \angle \mathrm{B}=\angle \mathrm{E}, \angle \mathrm{F}=\angle \mathrm{Cand} \mathrm{AB}=3 \mathrm{DE}$. Then, two triangles are
(a) congruent but not similar. (b) similar but not congruent.
(c) neither congruent nor similar. (d) congruent as well as similar.

Section B 2 marks each

Q18. D is a point on side QR of $\triangle \mathrm{PQR}$ such that $\mathrm{PD} \perp \mathrm{QR}$. Will it be correct to say that $\triangle \mathrm{PQD} \sim \Delta \mathrm{RPD}$? Why?
Q19. In the $\triangle A B C, \angle A C B=90^{\circ}$ and $C D$ II $A B, D$ lies on $A B$. Prove that $C D^{2}=B D \times A D$ Q20. In a triangle $P Q R, N$ is a point on $P R$ such that $Q N \perp P R$. If $P N . N R=Q N^{2}$, prove that $\angle \mathrm{PQR}=90^{\circ}$
Q. 21 In an isosceles triangle $A B C$ if $A C=B C$ and $A B 2=2 A C 2$, Prove that $\angle C$ is a right angle Q. 22 Diagonals $A C$ and $B D$ of a trapezium $A B C D$ with $A B \| D C$ intersect each other at the point O. Using a similarity criterion for two triangles, show that $O A / O C=O B / O D$ Q.23. Diagonals of a trapezium $A B C D$ with $A B \| D C$ intersect each other at the point O. If $A B=2 D C$, find ratio of the areas of $\triangle A O B$ and $\triangle C O D$

Q. $24 P Q R$ is a right triangle right angled at P and M is a point on $Q R$ such that $P M \perp Q R$. Show that PM2 = QM. MR.
Q.25. D is a point on the side BC of a triangle ABC such that $\angle A D C=\angle B A C$. Show that $C A^{2}=C B . C D$.

Q. 26 in a equilateral triangle $A B C$, prove that three times the square of one side is equal to four times the square of one of its altitudes.

Section C 3 marks each

Q27. O is any point inside a rectangle $A B C D$. Prove that $O B^{2}+O D^{2}=O A^{2}+O C^{2}$.
Q 10 . In $\mathrm{A} P \mathrm{PR}, \mathrm{PD} \perp \mathrm{QR}$ such that D lies on QR . If $\mathrm{PQ}=a, \mathrm{PR}=b, \mathrm{QD}=c$ and $\mathrm{DR}=d$, prove that $(a+b)(a-b)=(c+d)(c-d)$.
Q28. Prove that the ratio of the areas of two similar triangles is equal to the ratio of the squares of their corresponding sides. Apply the above theorem on the following: $A B C$ is a triangle and $P Q$ is a straight line meeting $A B$ in P and $A C$ in Q. If $A P=1 \mathrm{~cm}, P B=4 \mathrm{~cm}, A Q=$ $1.5 \mathrm{~cm}, \mathrm{QC}=6 \mathrm{~cm}$, Prove that the area of $\triangle \mathrm{APQ}$ is one-sixteenth of the area of $\triangle A B C$. Q29. In Fig. 6.21, $P A, Q B, R C$ and $S D$ are all perpendiculars to a line $I, A B=6 \mathrm{~cm}, B C=9$ $\mathrm{cm}, C D=12 \mathrm{~cm}$ and $S P=36 \mathrm{~cm}$. Find $P Q, Q R$ and $R S$.
Q. 30 In the given figure $D E \| B C$ and $A C: A B=5: 4$. Find area ($\triangle D F E$)/ area ($\triangle C F B$)

Q. 31 In the given figure, if $\angle 1=\angle 2$ and $\Delta N S Q \cong \Delta M T R$ then prove that $\Delta \mathrm{PTS} \sim \Delta \mathrm{PRQ}$.

Q. $32 A B C$ is a right triangle right angled at C. Let $B C=a, C A=b A B=c$ and let p be the length of perpendicular from C on $A B$, prove that
(i) $c p=a b$ (ii) $1 / p^{2}=1 / a^{2}+1 / b^{2}$
Q. 33 In a equilateral triangle $A B C, D$ is a point on side $B C$ such that $B D=1 / 3 B C$. Prove that $9 A D^{2}=7 A B^{2}$.

Q.34. In the given figure PA, QB and RC are each perpendicular to $A C$. Prove that $1 / x+1 / y$ $=1 / z$

Q. 34 Prove that the equilateral triangles described on two sides of a right angled triangle are together equal to the equilateral triangle on the hypotenuse in terms of their areas.

