JSUNIL TUTORIAL , SAMASTIPUR, BIHAR

E10 Geometryl17 marksl Topic: Circle Topic:

Tangents to a circle motivated by chords drawn

(Prove) The tangent at any point of a circle is

 perpendicular to the radius through the point of contact.
(Prove) The lengths of tangents drawn from an external point to circle are equal.

$10^{\text {th }}$ Geometry [17 marks] Topic: Circle +
Construction
Tangents to a circle motivated by chords drawn from points coming closer and closer to the point.

1. (Prove) The tangent at any point of a circle is perpendicular to the radius through the point of contact.
2. (Prove) The lengths of tangents drawn from an external point to circle are equal.
Practice paper based on CBSE Question Paper SAII -2011-2012 For Exam 2013-14
1 mark Questions
Q. If two tangents inclined at an angle 60° are drawn to a circle of radius 5 cm , then length of each tangent (in cm) is equal to : (A) $5 \sqrt{ } 3 / 2$ (B) 10 (C) 3 (D) $5 \sqrt{ } 32$
Q. The distance between two parallel tangents in a circle of radius 3.5 cm is :
(A) 7 cm
(B) 14 cm (C) 3.5 cm
(D) 1.75 cm
Q. AT is a tangent to a circle at A with centre O from an external point T , such that $\mathrm{OT}=8 \mathrm{~cm}$ and $<$
OTA $=30^{\circ}$. The length of AT (in cm) is : (A) $\sqrt{2}$ (B) $3 \sqrt{2}$ (C) $4 \sqrt{ } 3$ (D) 4
Q. In given figure, O is the centre of a circle of radius 6 cm . At a distance of 10 cm from O , a point P is taken. Two tangents $P Q$ and $P R$ are drawn to the circle from this point. Then area of quadrilateral PQOR is :

Q. The length of the tangent drawn from a point 8 cm away from the centre of a circle of radius 6 cm is: (A) $\sqrt{ } 7 \mathrm{~cm}$ (B) $2 \sqrt{ } 7 \mathrm{~cm}$ (C) 10 cm (D) 5 cm Q. In the given figure, the pair of tangents $P Q$ and $P R$ drawn from an external point P to a circle with

JSUNIL TUTORIAL , SAMASTIPUR, BIHAR

centre O are inclined to each other at 90°. If length of each tangents is 5 cm , then the radius (in cm) of the circle is :

(A) 10
(B) 7.5 (C) 5
(D) 2.5
Q. From a point P, which is at a distance of 13 cm from the centre O of a circle of radius 5 cm , the pair of tangents PQ and PR are drawn to the circle. Then the area of the quadrilateral $P Q O R$ (in cm^{2}) is :
(A) 60
(B) 65
(C) 30
(D) 32.5
Q. If angle between two radii of a circle is 130°, the angle between the tangents at the ends of the radii is:
(A) 90°
(B) 50°
(C) 70°
(D) 40°
Q. In the given figure, PQ and PR are tangents to the circle with centre O such that $Q P R=50^{\circ}$, then OQR is equal to :

(A) 25°
(B) 30°
(C) 40°
(D) 50°
Q. In the given figure, AT is a tangent to the circle with centre O such that $O T$ is 4 cm and $<O T A=$ 30°, then AT is equal to (in cm)

(A) 4 (B) 2 (C) $2 \sqrt{3}$
(D) $4 \sqrt{ } 3$
Q In the given figure, $A B$ is a chord of the circle and $A O C$ is its diameter such that $\angle A C B=50^{\circ}$. If AT is the tangent to the circle at the point A, then $<B A T$ is equal to

(A) 65°
(B) 60°
(C) 50°
(D) 40°
Q. If radii of two concentric circles are 4 cm and 5 cm , then the length of each chord of one circle which is tangent to the other (in cm) is (A) 3 (B) 6 (C) 9 (D) 1 Q. If the angle between two radii of a circle is 130°, then the angle between the tangents at the end points of radii at their point of intersection is: (A) 90° (B) 50° (C) 70° (D) 40°
Q. If four sides of a quadrilateral $A B C D$ are tangential to the circle as shown in the fig, then :
(A) $A C+A D=B D+C D$
(B) $A B+C D=B C+A D$
(C) $A C+A D=B C+B D$ (D) $A B+C D=A C+B C$

JSUNIL TUTORIAL , SAMASTIPUR, BIHAR

Q. If PA and PB are two tangents from a point P to a circle with centre O and are inclined to each other at an angle of 80°, then $<\mathrm{POA}$ is equal to: (A) 50°
(B) 60°
(C) 70°
(D) 80°
Q. In the given fig., CP and CQ are tangents to a circle with centre O and line segment $A B$ touches the circle at R with $C P=11 \mathrm{~cm}, A R=3 \mathrm{~cm}, B C=7$ cm , then $B R$ is equal to :
(A) 4 cm (B) 3 cm
(C) 5 cm
(D) 10 cm

Q. Two tangents QA and QB are drawn to the circle with centre O such that $\angle A Q B=60^{\circ}$ with $A Q=3$ cm , then OQ is equal to : $(\mathrm{A}) \sqrt{ } 3$ (B) $\sqrt{3} / 2$ (C) 6 cm (D) $2 \sqrt{ } 3 \mathrm{~cm}$
Q. To draw two tangents to a circle, which are inclined at an angle of 60°, the perpendiculars are to be drawn at the ends of two radii which are at an angle of : (A) 60° (B) 120° (C) 90° (D) 75°
Q. If tangents $P A$ and $P B$ from a point P to a circle with centre O , are inclined to each other at an angle of 80°, then $<\mathrm{POA}$ is equal to (A) 50° (B) 60° (C) 70° (D) 80°
Q. PA is a tangent to a circle from a point A with center O . Find the radius OA if $\mathrm{PA}=4 \mathrm{~cm}$ and $\mathrm{OP}=$ 5 cm . (A) 2 cm (B) 3 cm (C) 1.5 cm (D) none Q. If O is the centre of a circle, PQ is a chord and the tangent $P R$ at P make an angle of 60° with $P Q$, then $<\mathrm{POQ}$ is equal to :

Q. If $P A$ and $P B$ are two tangents drawn from a point P to a circle with centre O touching it at A and B, prove that $O P$ is the perpendicular bisector of $A B$. Q. In the given figure, TP and TQ are tangents from T to the circle with centre O and R is any point on the circle. If $A B$ is a tangent to the circle at R, prove that: $T A+A R=T B+B R$

Q. Two tangents PA and PB are drawn from an external point P to a circle with centre O . Prove that AOBP is a cyclic quadrilateral
Q. In the given figure, tangents $A C$ and $A B$ are drawn to a circle from a point A such that $B A C=30^{\circ}$. A chord $B D$ is drawn parallel to the tangent $A C$. Find DBC.

Q. In given figure, a circle touches the side QR of Δ PQR at A and sides PQ and PR on producing at S and T respectively. If $P S=8 \mathrm{~cm}$, find the perimeter of $\triangle P Q R$.

Q. A circle touches all the four sides of the quadrilateral $A B C D$, as shown in the figure. If $A B=6$ $\mathrm{cm}, B C=7 \mathrm{~cm}, C D=4 \mathrm{~cm}$, find the length of $A D$.

Q. PT and QT are two tangents to the circle. If <PTQ $=50^{\circ}$, find $<P S Q$ and $<\mathrm{OPQ}$

Q. Prove that the tangents drawn at the end points of a diameter of a circle are parallel
Q. Prove that in two concentric circle, the chord of the larger circle, which touches the smaller circle, is bisected at the point of contact.

JSUNIL TUTORIAL , SAMASTIPUR, BIHAR

3 marks Questions

Q. In fig. A circle is inscribe in a triangle PQR with $P Q=10 \mathrm{~cm}, Q R=8 \mathrm{~cm}$ and $P R=12 \mathrm{~cm}$. Find the lengths of QM, RN and PL

$Q . A B C$ is a right - angled triangle, right angled at B and with $B C=6 \mathrm{~cm}$ and $A B=8 \mathrm{~cm}$. A circle with centre O and radius x has been inscribed in $\Delta A B C$.

Find the value of x.
Q. Prove that the intercept of a tangent between a pair of parallel tangents to a circle subtend a right angle at the centre of the circle.
Q. Two tangents TP and TQ are drawn to a circle with centre O , from an external point T. Prove that $<P T Q=2<O P Q$
Q. In the fig., $P Q$ and RS are two parallel tangents to a circle with centre O and another tangent $X Y$, with point of contact C intersects $P Q$ at A and $R S$ at B. Prove that $\angle A O B=90^{\circ}$.

Q. If all the sides of a parallelogram touch a circle then prove that the parallelogram is a rhombus. or,

Prove that the parallelogram circumscribing a circle is a rhombus.
Q. PQ is a chord of length 8 cm of a circle of radius 5 cm . The tangents at P and Q intersect at a point T. Find the length TP.
Q. $A B C$ is an isosceles triangle in which $A B=A C$, circumscribed about a circle, as shown in the figure. Prove that the base is bisected by the point of contact.

Q. $A B$ is a diameter and $A C$ is a chord of a circle such that $<B A C=30^{\circ}$. If the tangent at C intersects $A B$ produced at D , prove that $\mathrm{BC}=\mathrm{BD}$.
Q. A circle touches the side $B C$ of a $A B C$ at point P and touches $A B$ and $A C$ when produced at Q and R respectively. Show that $A Q=1 / 2($ perimeter of Δ ABC)
Q. In the given figure ' O ' is the centre of the circle.
Determine $<A Q B$ and $\angle A M B$, if $P A$ and $P B$ are tangents and, $\angle \mathrm{APB}=75^{\circ}$

Q. In fig. Two circles with centre A and B touch each externally. $\mathrm{PM}=15 \mathrm{~cm}$ is tangent to circle with centre A and $\mathrm{QN}=13 \mathrm{~cm}$ is tangent to circle with

JSUNIL TUTORIAL , SAMASTIPUR, BIHAR

centre B from external points P \& Q. If $P A=17 \mathrm{~cm}$ and $B Q=12 \mathrm{~cm}$. Find the distance between the centres A and B of circles.

Q. ABCD is a quadrilateral such that $\angle \mathrm{D}=90^{\circ} \cdot \mathrm{A}$ circle with centre O and radius and touches the sides $A B, B C, C D$, and $D A$ at P, Q, R and S respectively. If $\mathrm{BC}=38 \mathrm{~cm}, \mathrm{CD}=25 \mathrm{~cm}$ and $\mathrm{BP}=$ 27 cm find r .
Q. In the figure, the radius of in circle of $\Delta \mathrm{ABC}$ is 4 cm and segments into which one side $B C$ is divided by the point of contact D are 6 cm and 8 cm . Find $A B$ and $A C$.

Q. Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre.
Q. In the given figure a circle touches the sides $P Q$, $Q R$ and $P R$ of $\square P Q R$ at the points X, Y and Z respectively. Show that $P X+Q Y+R Z=X Q+Y R+$ $Z P=1 / 2$ (Perimeter of $\Delta P Q R)$

Q. In the given figure, from an external point P, tangents PX and PY are drawn to a circle with centre O. If $A B$ is another tangent to the circle at C and $P X=14 \mathrm{~cm}$, find the perimeter of $\triangle P A B$.

Q. Prove that the line segment joining the points of contact of two parallel tangents passes through the centre.
Q. Prove that the tangent at any point of a circle is perpendicular to the radius through the point of contact.
Q. Two concentric circles are of radii 5 cm and 3 cm . Find the length of the chord of the larger circle which touches the smaller circle.
Q. In the given figure, all the sides of a quadrilateral $A B C D$ touch a circle with centre O. Prove that $\angle A O B+\angle \mathrm{COD}=180^{\circ}$ and $\angle \mathrm{BOC}+\angle \mathrm{AOD}=180^{\circ}$

JSUNIL TUTORIAL , SAMASTIPUR, BIHAR

Q. In the given figure, PA and PB are two tangents drawn to a circle with centre O and radius r. If $\mathrm{OP}=$ $2 r$, show that $\triangle A P B$ is equilateral.

Q. Two concentric circles are of radii 5 cm and 3 cm and centre at O. Two tangents PA and PB are drawn to two circles from an external point P such that $A P=12 \mathrm{~cm}$ (see figure). Find length of $B P$.

4 marks Questions

Q. Prove that the tangent to a circle is perpendicular to the radius through the point of contact.
Q. Prove that the lengths of tangents drawn from an external point to a circle are equal.
Q. The radius of the in-circle of a triangle is 4 cm and the segments into which one side is divided by the point of contact are 6 cm and 8 cm . Determine the other two sides of the triangle.
Q. Two circle with centers O and O ' of radii 3 cm and 4 cm respectively intersect at two points P and Q such that OP and O'P are tangents to the two circles. Find the length of the common chord P Q . Q. In given figure, PQ is a chord of length 8 cm in a circle of radius 5 cm . The tangents at P and Q intersect at a point T. Find the length of TP.

Q. In given figure, $\triangle A B C$ is right angled at B. $A B=6$ $\mathrm{cm}, \mathrm{BC}=8 \mathrm{~cm}$. Find the radius ' r ' of the circle inscribed.

Q. A circle with centre O touches the sides of a Quadrilateral $A B C D$ at P, Q, R and S respectively. Prove that the angles, subtended at the centre by a pair of opposite sides of $A B C D$ are supplementary. Q.A $\triangle A B C$ is drawn to circumscribe a circle of radius 4 cm such that the segments BD and DC into which $B C$ is divided by the point of contact D are of length 8 cm and 6 cm respectively. (see figure). Find the sides $A B$ and $A C$.

