JSUNIL TUTORIAL'S CBSE TEST PAPER CHAPTER - SIMILAR TRIANGLE CLASS 10TH

1. If a straight line divides any two sides of a triangle in the same ratio, then prove that the line must be parallel to the third side.
2. Prove that, the internal (external) bisector of an angle of a triangle divides the opposite side internally (externally) in the ratio of the corresponding sides containing the angle.
3. In $\Delta P Q R$, given that S is a point on $P Q$ such that $S T$ II $Q R$ and $P S / S Q=3 / 5$ If $P R=5.6 \mathrm{~cm}$, then find $P T$.
4. In $\triangle A B C$, the internal bisector $A D$ of $<A$ meets the side $B C$ at D. If $B D=2.5 \mathrm{~cm}, A B=5 \mathrm{~cm}$ and $A C=4.2 \mathrm{~cm}$, then find $D C$.
5. D is the midpoint of the side $B C$ of $\triangle A B C$. If P and Q are points on $A B$ and on $A C$ such that $D P$ bisects $<$ $B D A$ and $D Q$ bisects $<A D C$, then prove that $P Q$ II $B C$.
6. In $\triangle A B C, \angle A B C=90^{\circ}$ and $B D \perp A C$. If $A B=5 \mathrm{~cm}, B D=3 \mathrm{~cm}$ and $C D=5 \mathrm{~cm}$, then find the value of $B C$.
7. In a quadrilateral $A B C D$, the bisectors of $<B$ and $<D$ intersect on $A C$ at E. Prove that $A B$
/ BC = AD/DC
8. The internal bisector of $<\mathrm{A}$ of $\triangle \mathrm{ABC}$ meets BC at D and the external bisector of $<\mathrm{A}$ meets BC produced at E .

Prove that $\mathrm{BD} / \mathrm{BE}=\mathrm{CD} / \mathrm{CE}$
9. $A B C D$ is a quadrilateral with $A B=A D$. If $A E$ and $A F$ are internal bisectors of $<B A C$ and $<D A C$ respectively, then prove that EF II BD.
10. A girl of height 120 cm is walking away from the base of a lamp-post at a speed of $0.6 \mathrm{~m} / \mathrm{sec}$. If the lamp is 3.6 m above the ground level, then find the length of her shadow after 4 seconds
11. Prove that In a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.
12. Prove that in any triangle the sum of the squares of any two sides is equal to twice the square of half of the third side, together with twice the square of the median which bisects the third side.
13. If $A B C$ is an obtuse angled triangle, obtuse angled at B and if $A D \perp C B$ then Prove that
$A C^{2}=A B^{2}+B C^{2}+2 B C x B D$
14. In equilateral triangle $A B C$, if $A D \square B C$, then prove that $3 A B^{2}=4 A D^{2}$
15. In a right triangle $A B C$, right angled at C, P and Q are points of the sides $C A$ and $C B$ respectively, which divide these sides in the ratio 2: 1. Prove that (i) $9 A Q^{2}=9 A C^{2}+4 B C^{2}$ (ii) $9 B P^{2}=9 B C^{2}+4 A C^{2}$ (iii) $9\left(A Q^{2}+B P^{2}\right)$ $=13 A B^{2}$ [Hint Since P divides $A C$ in the ratio $2: 1, C P=2 / 3 A C, Q C=2 / 3 B C$]
16. P and Q are the mid points on the sides $C A$ and $C B$ respectively of triangle $A B C$ right angled at C. Prove that $4\left(A Q^{2}+B P^{2}\right)=5 A B^{2}$
17. In an equilateral $\triangle A B C$, the side $B C$ is trisected at D. Prove that $9 A D^{2}=7 A B^{2}$
18. Prove that three times the sum of the squares of the sides of a triangle is equal to four times the sum of the squares of the medians of the triangle.
19. If $A B C$ is an obtuse angled triangle, obtuse angled at B and if $A D \perp C B$ Prove that $A C 2=A B^{2}+B C^{2}+2 B C x B D$
20. If $A B C$ is an acute angled triangle, acute angled at B and $A D \perp B C$ prove that $A C^{2}=A B^{2}+B C^{2}-2 B C x B D$

