CBSE TEST PAPER-02

MATHEMATICS (Class-10)

Chapter: Triangles

1. In a right triangle $A B C$, right angled at C, P and Q are points of the sides $C A$ and $C B$ respectively, which divide these sides in the ratio 2 : 1 . Prove that
(I) $9 A Q^{2}=9 A C^{2}+4 B C^{2}$
(II) $9 \mathrm{BP}^{2}=9 \mathrm{BC}^{2}+4 \mathrm{AC}^{2}$
(III) $9\left(A Q^{2}+B P^{2}\right)=13 A B^{2}$
2. $A B C$ is a triangle. $P Q$ is the line segment intersecting $A B$ in P and $A C$ in Q such that $P Q$ parallel to $B C$ and divides triangle $A B C$ into two parts equal in area. Find $B P: A B$.
3. P and Q are the mid points on the sides $C A$ and $C B$ respectively of triangle $A B C$ right angled at C. Prove that $4\left(A Q^{2}+B P^{2}\right)=5 A B^{2}$
4. In an equilateral triangle $A B C$, the side $B C$ is trisected at D. Prove that $9 A D^{2}=7 A B^{2}$
5. Prove that three times the sum of the squares of the sides of a triangle is equal to four times the sum of the squares of the medians of the triangle.
6. If $A B C$ is an obtuse angled triangle, obtuse angled at B and if $A D^{\wedge} C B$ Prove that $A C^{2}=A B^{2}+B C^{2}+2 B C \times B D$
7. Prove that in any triangle the sum of the squares of any two sides is equal to twice the square of half of the third side together with twice the square of the median, which bisects the third side. [To prove $\left.A B^{2}+A C^{2}=2 A D^{2}+2(1 / 2 B C)^{2}\right]$
8. $A B C$ is a right triangle right-angled at C and $A C=\sqrt{3} B C$. Prove that $\angle A B C=60^{\circ}$.
