SAMPLE QUESTION PAPER 2015 ### SUMMATIVE ASSESSMENT - I, 2015 MATHEMATICS Class - X #### General Instructions: The question paper consists of 31 questions divided into four sections A, B, C and D. Section - A comprises of 4 questions of 1 mark each; Section - B comprises of 6 questions of 2 marks each; Section - C comprises of 10 questions of 3 marks each and Section - D comprises of 11 questions of 4 marks each. Section - A - 1. If $\triangle ABC \sim \triangle DEF$, BC = 3EF and area ($\triangle ABC$) = 117 cm², then find area (DEF). - 2. Find the value of $4\csc^2 60^0$ 16 $\tan^2 30^0$. - 3. Find the value of $\sin 60^{\circ} \cos 30^{\circ} \cos 60^{\circ} \sin 30^{\circ}$. - 4. Weekly household expenditure of families living in a housing society are shown below: | Weekly Expenditure (in Rs) | Up to 3000 | 3000-6000 | 6000-9000 | 9000-12000 | 12000-15000 | |----------------------------|------------|-----------|-----------|------------|-------------| | Number of Families | 4 | 25 | 31 | 48 | 10 | Find the upper limit of the modal class. #### Section - B - 5. Find whether decimal expansion of 13/64 is a terminating or non-terminating decimal. If it terminates, find the number of decimal places its decimal expansion has. - 6. Find the prime factorisation of the denominator of the rational number equivalent to 1.033. - 7. Check whether x^3 $4x^2$ 3x + 2 is divisible by x 2 - 8. Find the side of a rhombus whose diagonals are of length 60 cm and 80 cm. 9. Find the value of , if: $\frac{\cos A}{1-\sin A} + \frac{\cos A}{1+\sin A} = 4$ 10. Given below is the distribution of weekly pocket money received by students of a class. Calculate the pocket money that is received by most of the students. | Pocket Money(in | 0-20 | 20 – 40 | 40 – | 60-80 | 80-100 | 100-120 | 120- | |-----------------|------|---------|------|-------|--------|---------|------| | Rs.) | | | 60 | | | | 140 | | No of students | 2 | 2 | 3 | 12 | 18 | 5 | 2 | Section - C - 11. Three bells toll at intervals of 12 minutes, 15 minutes and 18 minutes respectively. If they start tolling together, after what time will they next toll together? - 12. Determine graphically whether the following pair of linear equations 4x + 6y = 96 and 2x + 3y = 6 has (i) a unique solution, (ii) infinitely many solutions or (iii) no solution - 13. Find the zeroes of the quadratic polynomial $3x^2$ 2 and verify the relationship between the zeroes and the coefficients. 14. If the polynomial $6x^4 + 8x^3 + 17x^2 + 21x + 7$ is divided by another polynomial $3x^2 + 4x + 1$, the remainder comes out to be ax + b. Find a and b. - 15. In a rhombus prove that four times the square of any side is equal to sum of the squares of its diagonals. - 16. In the figure \triangle ABC and \triangle DBC have same base BC and lie on the same side. If PQ II BA and PR II BD, then prove that QR II AD. 17. Evaluate: cosec 39°. cos 51° + tan 21°.cot 69° - sec² 21° 18. Simplify: $\frac{\sin^3\theta - \cos^3\theta}{\sin\theta - \cos\theta}$ 19. In a small scale industry, salaries of employees are given in the following distribution table : | Salary (in Rs.) | 4000- | 5000- | 6000- | 7000-8000 | 8000-9000 | 9000- | |-----------------|-------|-------|-------|-----------|-----------|-------| | | 500 | 6000 | 7000 | | | 10000 | | Number of | 20 | 60 | 100 | 50 | 80 | 90 | | employees | | | | | | | Find the mean salary of the employees. 20. In a study on asthmatic patients, the following frequency distribution was obtained. Find the average (mean) age at the detection. Age at detection (in years) 0-9 10-19 20-29 30-39 40-49 Number of patients 12 25 13 10 5 Section - D - 21 . Find the greatest 5 digit number which is exactly divisible by 12, 18 and 24. - 22. A man started his job with a certain monthly salary, and earned a fixed increment every year. His salary was Rs. 15,000 after 4 years of service and Rs.18,000 after 10 years of service. What was his starting salary and his annual increment? What character you can imbibe from his life? - 23. 5 years ago, age of one sister was twice the other sister. 5 years hence their ages will be in the ratio - 2:3. Find their present ages. - 24 . Divide polynomial x^4 $6x^3$ + $8x^2$ + 5x -7 by x 1 and find quotient and remainder. Also verify the division algorithm. - 25. If P,Q,R and S are the middle points of a quadrilateral ABCD, then prove that PQRS is a parallelogram. - 26. If \triangle ABC ~ \triangle PQR and AD, PS are bisectors of corresponding angles A and P, then prove that $$\frac{ar\left(\Delta ABC\right)}{ar\left(\Delta PQR\right)} = \frac{AD^2}{PS^2}$$ - 27. Prove that : $(\tan\theta + \sec\theta 1) \cdot (\tan\theta + 1 + \sec\theta) = \frac{2\sin\theta}{1-\sin\theta}$ - 28. if $\sin\theta = \frac{c}{\sqrt{c^2 + d^2}}$ and d >0 find the value of $\cos\theta$ and $\tan\theta$ - 29. if $m = \cos A \sin A$ and $n = \cos A + \sin A$, show that $$\frac{m^2 + n^2}{m^2 - n^2} = \frac{-1}{2} \operatorname{SecA.Cosec} A = \frac{\cot A + \tan A}{2}$$ 30. For one term, absentee record of students is given. If mean is 15.5, find the missing frequencies x and y. | Number of days | 0-5 | 5- 10 | 10-15 | 15-20 | 20-25 | 25-30 | 30-35 | 35-40 | Total | |--------------------|-----|-------|-------|-------|-------|-------|-------|-------|-------| | Number of students | 15 | ,16 | X | 8 | У | 8 | 6 | 4 | 70 | 31. Pocket expenses of a class in a college are shown in the following frequency distribution: | Pocket expenses | 0-200 | 200 - 400 | 400-600 | 600-800 | 800-100 | 1000- | 1200-1400 | |--------------------|-------|-----------|---------|---------|---------|-------|-----------| | (in Rs) | | | | | | 1200 | | | Number of students | 33 | 74 | 170 | 88 | 76 | 44 | 25 | Find the mean and median for the above data...