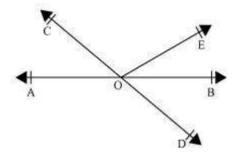
Exercise 6.1

Question 1:

In the given figure, lines AB and CD intersect at O. If $\angle AOC + \angle BOE = 70^{\circ}$ and $\angle BOD = 40^{\circ}$, find $\angle BOE$ and reflex $\angle COE$.



Answer:

AB is a straight line, rays OC and OE stand on it.

$$\therefore \angle AOC + \angle COE + \angle BOE = 180^{\circ}$$

$$\Rightarrow$$
 (\angle AOC + \angle BOE) + \angle COE = 180°

$$\Rightarrow$$
 70° + \angle COE = 180°

$$\Rightarrow \angle COE = 180^{\circ} - 70^{\circ} = 110^{\circ}$$

Reflex
$$\angle COE = 360^{\circ} - 110^{\circ} = 250^{\circ}$$

CD is a straight line, rays OE and OB stand on it.

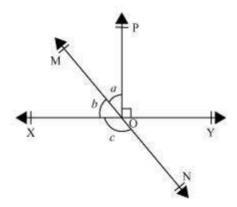
$$\therefore \angle COE + \angle BOE + \angle BOD = 180^{\circ}$$

$$\Rightarrow$$
 110° + \angle BOE + 40° = 180°

$$\Rightarrow \angle BOE = 180^{\circ} - 150^{\circ} = 30^{\circ}$$

Question 2:

In the given figure, lines XY and MN intersect at O. If $\angle POY = 90^{\circ}$ and a:b=2:3, find c.



Let the common ratio between a and b be x.

$$\therefore a = 2x$$
, and $b = 3x$

XY is a straight line, rays OM and OP stand on it.

$$\therefore \angle XOM + \angle MOP + \angle POY = 180^{\circ}$$

$$b + a + \angle POY = 180^{\circ}$$

$$3x + 2x + 90^{\circ} = 180^{\circ}$$

$$5x = 90^{\circ}$$

$$x = 18^{\circ}$$

$$a = 2x = 2 \times 18 = 36^{\circ}$$

$$b = 3x = 3 \times 18 = 54^{\circ}$$

MN is a straight line. Ray OX stands on it.

$$\therefore b + c = 180^{\circ}$$
 (Linear Pair)

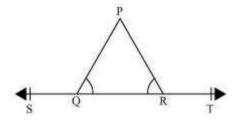
$$54^{\circ} + c = 180^{\circ}$$

$$c = 180^{\circ} - 54^{\circ} = 126^{\circ}$$

$$c = 126^{\circ}$$

Question 3:

In the given figure, $\angle PQR = \angle PRQ$, then prove that $\angle PQS = \angle PRT$.



Answer:

In the given figure, ST is a straight line and ray QP stands on it.

$$\therefore \angle PQS + \angle PQR = 180^{\circ}$$
 (Linear Pair)

$$\angle PQR = 180^{\circ} - \angle PQS (1)$$

$$\angle$$
PRT + \angle PRQ = 180° (Linear Pair)

$$\angle PRQ = 180^{\circ} - \angle PRT$$
 (2)

It is given that $\angle PQR = \angle PRQ$.

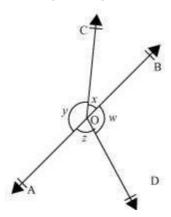
Equating equations (1) and (2), we obtain

$$180^{\circ} - \angle PQS = 180^{\circ} - \angle PRT$$

$$\angle PQS = \angle PRT$$

Question 4:

In the given figure, if x + y = w + z, then prove that AOB is a line.



Answer:

It can be observed that,

$$x + y + z + w = 360^{\circ}$$
 (Complete angle)

It is given that,

$$x + y = z + w$$

$$x + y + x + y = 360^{\circ}$$

$$2(x + y) = 360^{\circ}$$

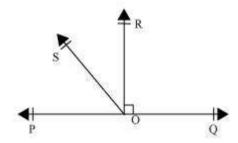
$$x + y = 180^{\circ}$$

Since x and y form a linear pair, AOB is a line.

Question 5:

In the given figure, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays OP and OR. Prove that

$$\angle ROS = \frac{1}{2} (\angle QOS - \angle POS).$$



Answer:

It is given that OR \perp PQ

$$\square$$
 \square POR = 90°

$$\square$$
 POS + \square SOR = 90°

$$\square ROS = 90^{\circ} - \square POS \dots (1)$$

$$\square$$
QOR = 90° (As OR \square PQ)

$$\square$$
QOS - \square ROS = 90°

$$\square ROS = \square QOS - 90^{\circ} \dots (2)$$

On adding equations (1) and (2), we obtain

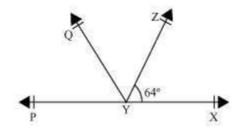
$$2 \square ROS = \square QOS - \square POS$$

$$\Box ROS = \frac{1}{2} (\Box QOS - \Box POS)$$

Question 6:

It is given that $\Box XYZ = 64^{\circ}$ and XY is produced to point P. Draw a figure from the given information. If ray YQ bisects $\Box ZYP$, find $\Box XYQ$ and reflex $\Box QYP$.

Answer:



It is given that line YQ bisects \square PYZ.

Hence, $\Box QYP = \Box ZYQ$

It can be observed that PX is a line. Rays YQ and YZ stand on it.

$$\square \square XYZ + \square ZYQ + \square QYP = 180^{\circ}$$

$$\Box$$
 64° + 2 \Box QYP = 180°

$$\Box \ 2\Box QYP = 180^{\circ} - 64^{\circ} = 116^{\circ}$$

Also,
$$\Box$$
ZYQ = \Box QYP = 58°

Reflex
$$\Box$$
QYP = 360° - 58° = 302°

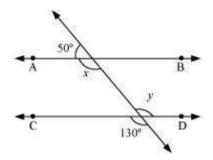
$$\square XYQ = \square XYZ + \square ZYQ$$

$$= 64^{\circ} + 58^{\circ} = 122^{\circ}$$

Exercise 6.2

Question 1:

In the given figure, find the values of x and y and then show that AB || CD.



Answer:

It can be observed that,

 $50^{\circ} + x = 180^{\circ}$ (Linear pair)

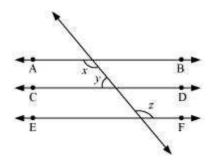
$$x = 130^{\circ} \dots (1)$$

Also, $y = 130^{\circ}$ (Vertically opposite angles)

As x and y are alternate interior angles for lines AB and CD and also measures of these angles are equal to each other, therefore, line AB \parallel CD.

Question 2:

In the given figure, if AB || CD, CD || EF and y: z = 3: 7, find x.



Answer:

It is given that AB || CD and CD || EF

 \square AB || CD || EF (Lines parallel to the same line are parallel to each other)

It can be observed that

x = z (Alternate interior angles) ... (1)

It is given that y: z = 3: 7

Let the common ratio between y and z be a.

 \square y = 3a and z = 7a

Also, $x + y = 180^{\circ}$ (Co-interior angles on the same side of the transversal)

 $z + y = 180^{\circ}$ [Using equation (1)]

 $7a + 3a = 180^{\circ}$

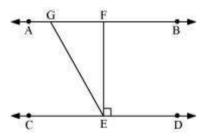
 $10a = 180^{\circ}$

 $a = 18^{\circ}$

$$\Box x = 7a = 7 \times 18^{\circ} = 126^{\circ}$$

Question 3:

In the given figure, If AB || CD, EF \square CD and \square GED = 126°, find \square AGE, \square GEF and \square FGE.



Answer:

It is given that,

AB || CD

EF □ CD

□GED = 126°

☐ ☐GEF + ☐FED = 126°

 \Box \Box GEF + 90° = 126°

☐ ☐ GEF = 36°

 \square AGE and \square GED are alternate interior angles.

 \square \square AGE = \square GED = 126°

However, $\Box AGE + \Box FGE = 180^{\circ}$ (Linear pair)

 \Box 126° + \Box FGE = 180°

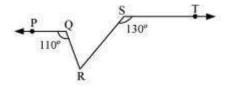
$$\Box$$
 FGE = 180° - 126° = 54°

$$\square$$
 AGE = 126°, \square GEF = 36°, \square FGE = 54°

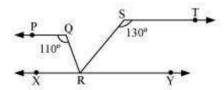
Question 4:

In the given figure, if PQ || ST, \Box PQR = 110° and \Box RST = 130°, find \Box QRS.

[Hint: Draw a line parallel to ST through point R.]



Answer:



Let us draw a line XY parallel to ST and passing through point R.

$$\Box$$
PQR + \Box QRX = 180° (Co-interior angles on the same side of transversal QR)

$$\Box \ 110^{\circ} + \Box QRX = 180^{\circ}$$

$$\square$$
 \square QRX = 70°

Also,

$$\Box$$
RST + \Box SRY = 180° (Co-interior angles on the same side of transversal SR)

$$130^{\circ} + \Box SRY = 180^{\circ}$$

XY is a straight line. RQ and RS stand on it.

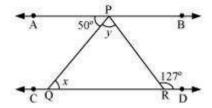
$$\square$$
 \square QRX + \square QRS + \square SRY = 180°

$$70^{\circ} + \Box QRS + 50^{\circ} = 180^{\circ}$$

$$\Box$$
QRS = 180° - 120° = 60°

Question 5:

In the given figure, if AB || CD, \square APQ = 50° and \square PRD = 127°, find x and y.



 \square APR = \square PRD (Alternate interior angles)

$$50^{\circ} + y = 127^{\circ}$$

$$y = 127^{\circ} - 50^{\circ}$$

$$y = 77^{\circ}$$

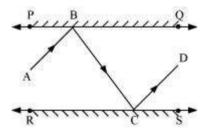
Also, $\Box APQ = \Box PQR$ (Alternate interior angles)

$$50^{\circ} = x$$

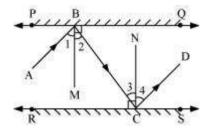
$$\Box x = 50^{\circ} \text{ and } y = 77^{\circ}$$

Question 6:

In the given figure, PQ and RS are two mirrors placed parallel to each other. An incident ray AB strikes the mirror PQ at B, the reflected ray moves along the path BC and strikes the mirror RS at C and again reflects back along CD. Prove that AB || CD.



Answer:



Let us draw BM \square PQ and CN \square RS.

As PQ || RS,

Therefore, BM || CN

Thus, BM and CN are two parallel lines and a transversal line BC cuts them at B and C respectively.

 $\Box\Box$ 2 = \Box 3 (Alternate interior angles)

However, $\Box 1 = \Box 2$ and $\Box 3 = \Box 4$ (By laws of reflection)

 \Box \Box 1 = \Box 2 = \Box 3 = \Box 4

Also, $\Box 1 + \Box 2 = \Box 3 + \Box 4$

 $\Box ABC = \Box DCB$

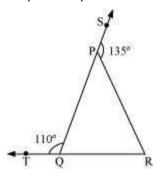
However, these are alternate interior angles.

□ AB || CD

Exercise 6.3

Question 1:

In the given figure, sides QP and RQ of \triangle PQR are produced to points S and T respectively. If \Box SPR = 135° and \Box PQT = 110°, find \Box PRQ.



Answer:

It is given that,

 \Box SPR = 135° and \Box PQT = 110°

 \Box SPR + \Box QPR = 180° (Linear pair angles)

 \square 135° + \square QPR = 180°

 \square \square QPR = 45°

Also, $\Box PQT + \Box PQR = 180^{\circ}$ (Linear pair angles)

 \Box 110° + \Box PQR = 180°

 \square \square PQR = 70°

As the sum of all interior angles of a triangle is 180° , therefore, for ΔPQR ,

 \square QPR + \square PQR + \square PRQ = 180°

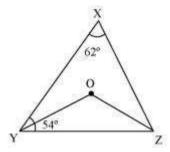
 \Box 45° + 70° + \Box PRQ = 180°

 \Box \Box PRO = 180° - 115°

□ □PRQ = 65°

Question 2:

In the given figure, $\Box X = 62^{\circ}$, $\Box XYZ = 54^{\circ}$. If YO and ZO are the bisectors of $\Box XYZ$ and $\Box XZY$ respectively of ΔXYZ , find $\Box OZY$ and $\Box YOZ$.



As the sum of all interior angles of a triangle is 180° , therefore, for ΔXYZ ,

$$\Box X + \Box XYZ + \Box XZY = 180^{\circ}$$

$$62^{\circ} + 54^{\circ} + \square XZY = 180^{\circ}$$

$$\Box XZY = 180^{\circ} - 116^{\circ}$$

$$\Box XZY = 64^{\circ}$$

 \Box OZY = 2 = 32° (OZ is the angle bisector of \Box XZY)

Similarly,
$$\square OYZ = \frac{54}{2} = 270$$

Using angle sum property for ΔOYZ , we obtain

$$\Box$$
OYZ + \Box YOZ + \Box OZY = 180°

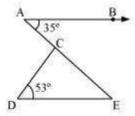
$$27^{\circ} + \Box YOZ + 32^{\circ} = 180^{\circ}$$

$$\Box$$
YOZ = 180° - 59°

$$\Box$$
YOZ = 121°

Question 3:

In the given figure, if AB || DE, \square BAC = 35° and \square CDE = 53°, find \square DCE.



Answer:

AB || DE and AE is a transversal.

 \square BAC = \square CED (Alternate interior angles)

 \Box \Box CED = 35°

In ΔCDE,

 \Box CDE + \Box CED + \Box DCE = 180° (Angle sum property of a triangle)

 $53^{\circ} + 35^{\circ} + \Box DCE = 180^{\circ}$

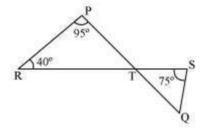
 \Box DCE = 180° - 88°

 \Box DCE = 92°

Question 4:

In the given figure, if lines PQ and RS intersect at point T, such that \Box PRT = 40°,

 \Box RPT = 95° and \Box TSQ = 75°, find \Box SQT.



Answer:

Using angle sum property for Δ PRT, we obtain

 \Box PRT + \Box RPT + \Box PTR = 180°

 $40^{\circ} + 95^{\circ} + \Box PTR = 180^{\circ}$

 \Box PTR = 180° - 135°

□PTR = 45°

 \Box STQ = \Box PTR = 45° (Vertically opposite angles)

□STQ = 45°

By using angle sum property for Δ STQ, we obtain

 \Box STQ + \Box SQT + \Box QST = 180°

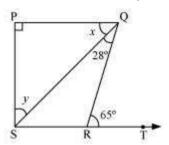
 $45^{\circ} + \Box SQT + 75^{\circ} = 180^{\circ}$

 $\Box SQT = 180^{\circ} - 120^{\circ}$

□SOT = 60°

Question 5:

In the given figure, if PQ \square PS, PQ || SR, \square SQR = 28° and \square QRT = 65°, then find the values of x and y.



Answer:

It is given that PQ || SR and QR is a transversal line.

 \Box PQR = \Box QRT (Alternate interior angles)

$$x + 28^{\circ} = 65^{\circ}$$

$$x = 65^{\circ} - 28^{\circ}$$

$$x = 37^{\circ}$$

By using the angle sum property for ΔSPQ , we obtain

$$\Box SPQ + x + y = 180^{\circ}$$

$$90^{\circ} + 37^{\circ} + y = 180^{\circ}$$

$$y = 180^{\circ} - 127^{\circ}$$

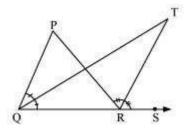
$$y = 53^{\circ}$$

$$x = 37^{\circ} \text{ and } y = 53^{\circ}$$

Question 6:

In the given figure, the side QR of ΔPQR is produced to a point S. If the bisectors of

 \Box PQR and \Box PRS meet at point T, then prove that \Box QTR= $\frac{1}{2}\Box$ QPR.



In $\triangle QTR$, $\Box TRS$ is an exterior angle.

$$\therefore \Box QTR + \Box TQR = \Box TRS$$

$$\Box$$
QTR = \Box TRS - \Box TQR (1)

For $\triangle PQR$, $\square PRS$ is an external angle.

$$\therefore \Box QPR + \Box PQR = \Box PRS$$

$$\Box$$
QPR + 2 \Box TQR = 2 \Box TRS (As QT and RT are angle bisectors)

$$\square$$
QPR = 2(\square TRS - \square TQR)

$$\Box$$
QPR = 2 \Box QTR [By using equation (1)]

$$\Box QTR = \overline{2} \Box QPR$$