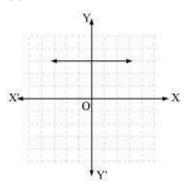
Exercise 2.1

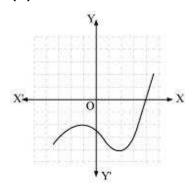
Question 1:

The graphs of y = p(x) are given in following figure, for some polynomials p(x). Find the number of zeroes of p(x), in each case.

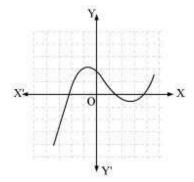
(i)



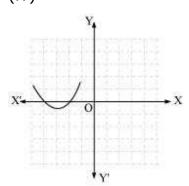
(ii)



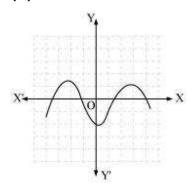
(iii)



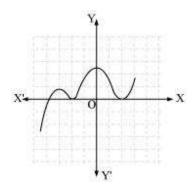
(iv)



(v)



(v)



Answer:

- (i) The number of zeroes is 0 as the graph does not cut the x-axis at any point.
- (ii) The number of zeroes is 1 as the graph intersects the x-axis at only 1 point.
- (iii) The number of zeroes is 3 as the graph intersects the x-axis at 3 points.
- (iv) The number of zeroes is 2 as the graph intersects the x-axis at 2 points.
- (v) The number of zeroes is 4 as the graph intersects the x-axis at 4 points.
- (vi) The number of zeroes is 3 as the graph intersects the *x*-axis at 3 points.

Exercise 2.2

Question 1:

Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.

(i)
$$x^2 - 2x - 8$$
 (ii) $4s^2 - 4s + 1$ (iii) $6x^2 - 3 - 7x$

$$(iv) 4u^2 + 8u(v)t^2 - 15(vi) 3x^2 - x - 4$$

Answer:

(i)
$$x^2-2x-8=(x-4)(x+2)$$

The value of x^2-2x-8 is zero when x-4=0 or x+2=0, i.e., when x=4 or x=-2

Therefore, the zeroes of x^2-2x-8 are 4 and -2.

Sum of zeroes =
$$4-2=2=\frac{-(-2)}{1}=\frac{-(\text{Coefficient of }x)}{\text{Coefficient of }x^2}$$

Product of zeroes $= 4 \times (-2) = -8 = \frac{(-8)}{1} = \frac{\text{Constant term}}{\text{Coefficient of } x^2}$

(ii)
$$4s^2 - 4s + 1 = (2s - 1)^2$$

The value of $4s^2 - 4s + 1$ is zero when 2s - 1 = 0, i.e., $s = \frac{1}{2}$

Therefore, the zeroes of $4s^2-4s+1$ are $\frac{1}{2}$ and $\frac{1}{2}$.

$$\frac{1}{2} + \frac{1}{2} = 1 = \frac{-(-4)}{4} = \frac{-(\text{Coefficient of } s)}{(\text{Coefficient of } s^2)}$$
Sum of zeroes =

Product of zeroes $=\frac{1}{2} \times \frac{1}{2} = \frac{1}{4} = \frac{\text{Constant term}}{\text{Coefficient of } s^2}$

(iii)
$$6x^2-3-7x=6x^2-7x-3=(3x+1)(2x-3)$$

The value of $6x^2 - 3 - 7x$ is zero when 3x + 1 = 0 or 2x - 3 = 0, i.e.,

$$x = \frac{-1}{3}$$
 or $x = \frac{3}{2}$

Therefore, the zeroes of $6x^2 - 3 - 7x$ are $\frac{-1}{3}$ and $\frac{3}{2}$.

Sum of zeroes = $\frac{-1}{3} + \frac{3}{2} = \frac{7}{6} = \frac{-(-7)}{6} = \frac{-(\text{Coefficient of } x)}{\text{Coefficient of } x^2}$

Product of zeroes = $\frac{-1}{3} \times \frac{3}{2} = \frac{-1}{2} = \frac{-3}{6} = \frac{\text{Constant term}}{\text{Coefficient of } x^2}$

(iv)
$$4u^2 + 8u = 4u^2 + 8u + 0$$

= $4u(u+2)$

The value of $4u^2 + 8u$ is zero when 4u = 0 or u + 2 = 0, i.e., u = 0 or u = -2

Therefore, the zeroes of $4u^2 + 8u$ are 0 and -2.

Sum of zeroes = $0 + (-2) = -2 = \frac{-(8)}{4} = \frac{-(\text{Coefficient of } u)}{\text{Coefficient of } u^2}$

Product of zeroes = $0 \times (-2) = 0 = \frac{0}{4} = \frac{\text{Constant term}}{\text{Coefficient of } u^2}$

(v)
$$t^2 - 15$$

= $t^2 - 0t - 15$
= $(t - \sqrt{15})(t + \sqrt{15})$

The value of t^2-15 is zero when $t-\sqrt{15}=0$ or $t+\sqrt{15}=0$, i.e., when $t=\sqrt{15}$ or $t=-\sqrt{15}$

Therefore, the zeroes of $t^2 - 15$ are $\sqrt{15}$ and $-\sqrt{15}$.

$$\sqrt{15} + \left(-\sqrt{15}\right) = 0 = \frac{-0}{1} = \frac{-\left(\text{Coefficient of }t\right)}{\left(\text{Coefficient of }t^2\right)}$$

Sum of zeroes =

Product of zeroes = $(\sqrt{15})(-\sqrt{15}) = -15 = \frac{-15}{1} = \frac{\text{Constant term}}{\text{Coefficient of } x^2}$

(vi)
$$3x^2 - x - 4$$

= $(3x - 4)(x + 1)$

The value of $3x^2 - x - 4$ is zero when 3x - 4 = 0 or x + 1 = 0, i.e.,

when
$$x = \frac{4}{3}$$
 or $x = -1$

Therefore, the zeroes of $3x^2 - x - 4$ are $\frac{4}{3}$ and -1.

Sum of zeroes = $\frac{4}{3} + (-1) = \frac{1}{3} = \frac{-(-1)}{3} = \frac{-(\text{Coefficient of } x)}{\text{Coefficient of } x^2}$

Product of zeroes $=\frac{4}{3}(-1)=\frac{-4}{3}=\frac{\text{Constant term}}{\text{Coefficient of }x^2}$

Question 2:

Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.

(i)
$$\frac{1}{4}$$
, -1 (ii) $\sqrt{2}$, $\frac{1}{3}$ (iii) 0 , $\sqrt{5}$

(iv)
$$_{1,1}(v) = -\frac{1}{4}, \frac{1}{4}(vi) = 4,1$$

Answer:

(i)
$$\frac{1}{4}$$
,-1

Let the polynomial be $ax^2 + bx + c$, and its zeroes be α and β .

$$\alpha + \beta = \frac{1}{4} = \frac{-b}{a}$$

$$\alpha\beta = -1 = \frac{-4}{4} = \frac{c}{a}$$

If a = 4, then b = -1, c = -4

Therefore, the quadratic polynomial is $4x^2 - x - 4$.

(ii)
$$\sqrt{2}, \frac{1}{3}$$

Let the polynomial be $ax^2 + bx + c$, and its zeroes be α and β .

$$\alpha + \beta = \sqrt{2} = \frac{3\sqrt{2}}{3} = \frac{-b}{a}$$

$$\alpha\beta = \frac{1}{3} = \frac{c}{a}$$

If a = 3, then $b = -3\sqrt{2}$, c = 1

Therefore, the quadratic polynomial is $3x^2 - 3\sqrt{2}x + 1$.

(iii)
$$0, \sqrt{5}$$

Let the polynomial be $ax^2 + bx + c$, and its zeroes be α and β .

$$\alpha + \beta = 0 = \frac{0}{1} = \frac{-b}{a}$$

$$\alpha \times \beta = \sqrt{5} = \frac{\sqrt{5}}{1} = \frac{c}{\alpha}$$

If a = 1, then b = 0, $c = \sqrt{5}$

Therefore, the quadratic polynomial is $x^2 + \sqrt{5}$.

(iv) 1, 1

Let the polynomial be $ax^2 + bx + c$, and its zeroes be α and β .

$$\alpha + \beta = 1 = \frac{1}{1} = \frac{-b}{a}$$

$$\alpha \times \beta = 1 = \frac{1}{1} = \frac{c}{a}$$

If
$$a = 1$$
, then $b = -1$, $c = 1$

Therefore, the quadratic polynomial is $x^2 - x + 1$.

$$(v) -\frac{1}{4}, \frac{1}{4}$$

Let the polynomial be $ax^2 + bx + c$, and its zeroes be α and β .

$$\alpha + \beta = \frac{-1}{4} = \frac{-b}{a}$$

$$\alpha \times \beta = \frac{1}{4} = \frac{c}{a}$$

If
$$a = 4$$
, then $b = 1$, $c = 1$

Therefore, the quadratic polynomial is $4x^2 + x + 1$.

(vi) 4, 1

Let the polynomial be $ax^2 + bx + c$.

$$\alpha + \beta = 4 = \frac{4}{1} = \frac{-b}{a}$$

$$\alpha \times \beta = 1 = \frac{1}{1} = \frac{c}{a}$$

If
$$a = 1$$
, then $b = -4$, $c = 1$

Therefore, the quadratic polynomial is $x^2 - 4x + 1$.

Exercise 2.3

Question 1:

Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following:

(i)
$$p(x) = x^3 - 3x^2 + 5x - 3$$
, $g(x) = x^2 - 2$

(ii)
$$p(x) = x^4 - 3x^2 + 4x + 5$$
, $g(x) = x^2 + 1 - x$

(iii)
$$p(x) = x^4 - 5x + 6$$
, $g(x) = 2 - x^2$

Answer:

(i)
$$p(x) = x^3 - 3x^2 + 5x - 3$$

 $q(x) = x^2 - 2$

$$\begin{array}{r}
x-3 \\
x^2-2 \overline{\smash)x^3-3x^2+5x-3} \\
x^3 -2x \\
\underline{- + \\
-3x^2+7x-3} \\
-3x^2 +6 \\
\underline{+ - \\
7x-9}
\end{array}$$

Quotient = x - 3

Remainder = 7x - 9

(ii)
$$p(x) = x^4 - 3x^2 + 4x + 5 = x^4 + 0.x^3 - 3x^2 + 4x + 5$$

 $q(x) = x^2 + 1 - x = x^2 - x + 1$

$$\begin{array}{r}
x^2 + x - 3 \\
x^2 - x + 1 \overline{\smash)} x^4 + 0.x^3 - 3x^2 + 4x + 5 \\
x^4 - x^3 + x^2 \\
\underline{- + -} \\
x^3 - 4x^2 + 4x + 5 \\
x^3 - x^2 + x \\
\underline{- + -} \\
-3x^2 + 3x + 5 \\
-3x^2 + 3x - 3 \\
\underline{+ - +} \\
8
\end{array}$$

Quotient = $x^2 + x - 3$

Remainder = 8

(iii)
$$p(x) = x^4 - 5x + 6 = x^4 + 0 \cdot x^2 - 5x + 6$$

 $q(x) = 2 - x^2 = -x^2 + 2$

$$\begin{array}{r}
-x^2 - 2 \\
-x^2 + 2 \overline{)} \quad x^4 + 0 \cdot x^2 - 5x + 6 \\
x^4 - 2x^2 \\
\underline{\qquad - + \\
2x^2 - 5x + 6 \\
2x^2 - 4 \\
\underline{\qquad - + \\
-5x + 10}
\end{array}$$

Quotient = $-x^2 - 2$

Remainder = -5x + 10

Question 2:

Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial:

(i)
$$t^2 - 3, 2t^4 + 3t^3 - 2t^2 - 9t - 12$$

(ii)
$$x^2 + 3x + 1, 3x^4 + 5x^3 - 7x^2 + 2x + 2$$

(iii)
$$x^3 - 3x + 1, x^5 - 4x^3 + x^2 + 3x + 1$$

Answer:

(i)
$$t^2-3$$
, $2t^4+3t^3-2t^2-9t-12$

$$t^2 - 3 = t^2 + 0.t - 3$$

$$\begin{array}{r}
2t^2 + 3t + 4 \\
t^2 + 0.t - 3) 2t^4 + 3t^3 - 2t^2 - 9t - 12 \\
2t^4 + 0.t^3 - 6t^2 \\
- - + \\
3t^3 + 4t^2 - 9t - 12 \\
3t^3 + 0.t^2 - 9t \\
- - + \\
4t^2 + 0.t - 12 \\
4t^2 + 0.t - 12 \\
- - + \\
0
\end{array}$$

Since the remainder is 0,

Hence, $t^2 - 3$ is a factor of $2t^4 + 3t^3 - 2t^2 - 9t - 12$.

(ii)
$$x^2 + 3x + 1$$
, $3x^4 + 5x^3 - 7x^2 + 2x + 2$

Since the remainder is 0,

Hence, $x^2 + 3x + 1$ is a factor of $3x^4 + 5x^3 - 7x^2 + 2x + 2$.

(iii)
$$x^3 - 3x + 1$$
, $x^5 - 4x^3 + x^2 + 3x + 1$

$$\begin{array}{r}
x^{2}-1 \\
x^{3}-3x+1 \overline{\smash)} x^{5}-4x^{3}+x^{2}+3x+1 \\
x^{5}-3x^{3}+x^{2} \\
\underline{\qquad - + \qquad -} \\
-x^{3} \qquad +3x+1 \\
-x^{3} \qquad +3x-1 \\
\underline{\qquad + \qquad - +} \\
2
\end{array}$$

Since the remainder $\neq 0$,

Hence, $x^3 - 3x + 1$ is not a factor of $x^5 - 4x^3 + x^2 + 3x + 1$.

Question 3:

Obtain all other zeroes of $3x^4 + 6x^3 - 2x^2 - 10x - 5$, if two of its zeroes are

$$\sqrt{\frac{5}{3}}$$
 and $-\sqrt{\frac{5}{3}}$

Answer:

$$p(x) = 3x^4 + 6x^3 - 2x^2 - 10x - 5$$

Since the two zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$,

$$\therefore \left(x - \sqrt{\frac{5}{3}} \right) \left(x + \sqrt{\frac{5}{3}} \right) = \left(x^2 - \frac{5}{3} \right)$$
 is a factor of $3x^4 + 6x^3 - 2x^2 - 10x - 5$.

Therefore, we divide the given polynomial by $x^2 - \frac{5}{3}$.

$$x^{2} + 0.x - \frac{5}{3}) \frac{3x^{2} + 6x + 3}{3x^{4} + 6x^{3} - 2x^{2} - 10x - 5}$$

$$3x^{4} + 0x^{3} - 5x^{2}$$

$$- - +$$

$$6x^{3} + 3x^{2} - 10x - 5$$

$$6x^{3} + 0x^{2} - 10x$$

$$- - +$$

$$3x^{2} + 0x - 5$$

$$3x^{2} + 0x - 5$$

$$- - +$$

$$0$$

$$3x^{4} + 6x^{3} - 2x^{2} - 10x - 5 = \left(x^{2} - \frac{5}{3}\right) \left(3x^{2} + 6x + 3\right)$$

$$= 3\left(x^{2} - \frac{5}{3}\right) \left(x^{2} + 2x + 1\right)$$

We factorize $x^2 + 2x + 1$

$$=(x+1)^2$$

Therefore, its zero is given by x + 1 = 0

$$x = -1$$

As it has the term $(x+1)^2$, therefore, there will be 2 zeroes at x=-1.

Hence, the zeroes of the given polynomial are $\sqrt{\frac{5}{3}}$, $-\sqrt{\frac{5}{3}}$, -1 and -1. Question 4:

On dividing $x^3 - 3x^2 + x + 2$ by a polynomial g(x), the quotient and remainder were x - 2 and -2x + 4, respectively. Find g(x).

Answer:

$$p(x) = x^3 - 3x^2 + x + 2$$
 (Dividend)

g(x) = ? (Divisor)

Quotient = (x - 2)

Remainder = (-2x + 4)

Dividend = Divisor × Quotient + Remainder

$$x^{3} - 3x^{2} + x + 2 = g(x) \times (x - 2) + (-2x + 4)$$
$$x^{3} - 3x^{2} + x + 2 + 2x - 4 = g(x)(x - 2)$$

$$x^3-3x^2+3x-2=g(x)(x-2)$$

g(x) is the quotient when we divide (x^3-3x^2+3x-2) by (x-2)

$$\begin{array}{r}
x^{2} - x + 1 \\
x - 2) \overline{)x^{3} - 3x^{2} + 3x - 2} \\
x^{3} - 2x^{2} \\
\underline{- + \\
-x^{2} + 3x - 2} \\
-x^{2} + 2x \\
\underline{+ - \\
x - 2} \\
x - 2 \\
\underline{- + \\
0}
\end{array}$$

$$\therefore g(x) = (x^2 - x + 1)$$

Question 5:

Give examples of polynomial p(x), g(x), q(x) and r(x), which satisfy the division algorithm and

- (i) deg $p(x) = \deg q(x)$
- (ii) $\deg q(x) = \deg r(x)$
- (iii) deg r(x) = 0

Answer:

According to the division algorithm, if p(x) and g(x) are two polynomials with

 $g(x) \neq 0$, then we can find polynomials q(x) and r(x) such that

$$p(x) = g(x) \times q(x) + r(x),$$

where r(x) = 0 or degree of r(x) < degree of <math>g(x)

Degree of a polynomial is the highest power of the variable in the polynomial.

(i) deg p(x) = deg q(x)

Degree of quotient will be equal to degree of dividend when divisor is constant (i.e., when any polynomial is divided by a constant).

Let us assume the division of $6x^2 + 2x + 2$ by 2.

Here,
$$p(x) = 6x^2 + 2x + 2$$

$$q(x) = 2$$

$$q(x) = 3x^2 + x + 1$$
 and $r(x) = 0$

Degree of p(x) and q(x) is the same i.e., 2.

Checking for division algorithm,

$$p(x) = g(x) \times q(x) + r(x)$$

$$6x^2 + 2x + 2 = 2(3x^2 + x + 1)$$

$$= 6x^2 + 2x + 2$$

Thus, the division algorithm is satisfied.

(ii) deg
$$q(x) = \text{deg } r(x)$$

Let us assume the division of $x^3 + x$ by x^2 ,

Here,
$$p(x) = x^3 + x$$

$$q(x) = x^2$$

$$q(x) = x$$
 and $r(x) = x$

Clearly, the degree of q(x) and r(x) is the same i.e., 1.

Checking for division algorithm,

$$p(x) = g(x) \times q(x) + r(x)$$

$$x^3 + x = (x^2) \times x + x$$

$$x^3 + x = x^3 + x$$

Thus, the division algorithm is satisfied.

(iii)deg
$$r(x) = 0$$

Degree of remainder will be 0 when remainder comes to a constant.

Let us assume the division of $x^3 + 1$ by x^2 .

Here,
$$p(x) = x^3 + 1$$

$$g(x) = x^2$$

$$q(x) = x$$
 and $r(x) = 1$

Clearly, the degree of r(x) is 0.

Checking for division algorithm,

$$p(x) = q(x) \times q(x) + r(x)$$

$$x^3 + 1 = (x^2) \times x + 1$$

$$x^3 + 1 = x^3 + 1$$

Thus, the division algorithm is satisfied.

Exercise 2.4

Question 1:

Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the coefficients in each case:

(i)
$$2x^3 + x^2 - 5x + 2$$
; $\frac{1}{2}$, 1, -2

(ii)
$$x^3 - 4x^2 + 5x - 2$$
; 2,1,1

Answer:

(i)
$$p(x) = 2x^3 + x^2 - 5x + 2$$
.

Zeroes for this polynomial are $\frac{1}{2}$, 1, -2

$$p\left(\frac{1}{2}\right) = 2\left(\frac{1}{2}\right)^3 + \left(\frac{1}{2}\right)^2 - 5\left(\frac{1}{2}\right) + 2$$
$$= \frac{1}{4} + \frac{1}{4} - \frac{5}{2} + 2$$
$$= 0$$

$$p(1) = 2 \times 1^3 + 1^2 - 5 \times 1 + 2$$

= 0

$$p(-2) = 2(-2)^{3} + (-2)^{2} - 5(-2) + 2$$
$$= -16 + 4 + 10 + 2 = 0$$

Therefore, $\frac{1}{2}$, 1, and -2 are the zeroes of the given polynomial.

Comparing the given polynomial with $ax^3 + bx^2 + cx + d$, we obtain a = 2,

$$b = 1$$
, $c = -5$, $d = 2$

We can take
$$\alpha = \frac{1}{2}$$
, $\beta = 1$, $\gamma = -2$

$$\alpha + \beta + \gamma = \frac{1}{2} + 1 + (-2) = -\frac{1}{2} = \frac{-b}{a}$$

$$\alpha\beta + \beta\gamma + \alpha\gamma = \frac{1}{2} \times 1 + 1(-2) + \frac{1}{2}(-2) = \frac{-5}{2} = \frac{c}{a}$$

$$\alpha\beta\gamma = \frac{1}{2} \times 1 \times (-2) = \frac{-1}{1} = \frac{-(2)}{2} = \frac{-d}{a}$$

Therefore, the relationship between the zeroes and the coefficients is verified.

(ii)
$$p(x) = x^3 - 4x^2 + 5x - 2$$

Zeroes for this polynomial are 2, 1, 1.

$$p(2) = 2^3 - 4(2^2) + 5(2) - 2$$

$$=8-16+10-2=0$$

$$p(1) = 1^3 - 4(1)^2 + 5(1) - 2$$
$$= 1 - 4 + 5 - 2 = 0$$

Therefore, 2, 1, 1 are the zeroes of the given polynomial.

Comparing the given polynomial with $ax^3 + bx^2 + cx + d$, we obtain a = 1, b = -4, c = 5, d = -2.

Verification of the relationship between zeroes and coefficient of the given polynomial

Sum of zeroes =
$$2+1+1=4=\frac{-(-4)}{1}=\frac{-b}{a}$$

Multiplication of zeroes taking two at a time = (2)(1) + (1)(1) + (2)(1)

$$=2+1+2=5$$
 $=\frac{(5)}{1}=\frac{c}{a}$

Multiplication of zeroes = $2 \times 1 \times 1 = 2$ = $\frac{-(-2)}{1} = \frac{-d}{a}$

Hence, the relationship between the zeroes and the coefficients is verified.

Question 2:

Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as 2, -7, -14 respectively.

Answer:

Let the polynomial be $ax^3 + bx^2 + cx + d$ and the zeroes be α, β , and γ . It is given that

$$\alpha + \beta + \gamma = \frac{2}{1} = \frac{-b}{a}$$
$$\alpha\beta + \beta\gamma + \alpha\gamma = \frac{-7}{1} = \frac{c}{a}$$
$$\alpha\beta\gamma = \frac{-14}{1} = \frac{-d}{a}$$

If a = 1, then b = -2, c = -7, d = 14

Hence, the polynomial is $x^3 - 2x^2 - 7x + 14$.

Question 3:

If the zeroes of polynomial x^3-3x^2+x+1 are a-b,a,a+b, find a and b.

Answer:

$$p(x) = x^3 - 3x^2 + x + 1$$

Zeroes are a - b, a + a + b

Comparing the given polynomial with $px^3 + qx^2 + rx + t$, we obtain

$$p = 1$$
, $q = -3$, $r = 1$, $t = 1$

Sum of zeroes = a - b + a + a + b

$$\frac{-q}{p} = 3a$$

$$\frac{-(-3)}{1} = 3a$$

$$3 = 3a$$

$$a = 1$$

The zeroes are 1-b, 1, 1+b.

Multiplication of zeroes = 1(1-b)(1+b)

$$\frac{-t}{p} = 1 - b^2$$

$$\frac{-1}{1} = 1 - b^2$$

$$1 - b^2 = -1$$

$$1 + 1 = b^2$$

$$b = \pm \sqrt{2}$$

Hence, a = 1 and $b = \sqrt{2}$ or $-\sqrt{2}$.

Ouestion 4:

]It two zeroes of the polynomial $x^4-6x^3-26x^2+138x-35$ are $2\pm\sqrt{3}$, find other zeroes.

Answer:

Given that $2 + \sqrt{3}$ and $2 - \sqrt{3}$ are zeroes of the given polynomial.

Therefore,
$$(x-2-\sqrt{3})(x-2+\sqrt{3}) = x^2 + 4 - 4x - 3$$

= $x^2 - 4x + 1$ is a factor of the given polynomial

For finding the remaining zeroes of the given polynomial, we will find the quotient by dividing $x^4 - 6x^3 - 26x^2 + 138x - 35$ by $x^2 - 4x + 1$.

$$\begin{array}{r}
x^2 - 2x - 35 \\
x^2 - 4x + 1 \overline{\smash)} \quad x^4 - 6x^3 - 26x^2 + 138x - 35 \\
x^4 - 4x^3 + x^2 \\
\underline{\qquad - + -} \\
-2x^3 - 27x^2 + 138x - 35 \\
-2x^3 + 8x^2 - 2x \\
\underline{\qquad + - +} \\
-35x^2 + 140x - 35 \\
-35x^2 + 140x - 35 \\
\underline{\qquad + - +} \\
0
\end{array}$$

Clearly,
$$x^4 - 6x^3 - 26x^2 + 138x - 35 = (x^2 - 4x + 1)(x^2 - 2x - 35)$$

It can be observed that $(x^2-2x-35)$ is also a factor of the given polynomial.

And
$$(x^2-2x-35) = (x-7)(x+5)$$

Therefore, the value of the polynomial is also zero when x-7=0 or x+5=0

Or
$$x = 7$$
 or -5

Hence, 7 and -5 are also zeroes of this polynomial.

Question 5:

If the polynomial $x^4 - 6x^3 + 16x^2 - 25x + 10$ is divided by another polynomial $x^2 - 2x + k$, the remainder comes out to be x + a, find k and a.

Answer:

By division algorithm,

 $Dividend = Divisor \times Quotient + Remainder$

Dividend – Remainder = Divisor \times Quotient

$$x^4 - 6x^3 + 16x^2 - 25x + 10 - x - a = x^4 - 6x^3 + 16x^2 - 26x + 10 - a$$
 will be perfectly

divisible by x^2-2x+k .

Let us divide $x^4 - 6x^3 + 16x^2 - 26x + 10 - a$ by $x^2 - 2x + k$

It can be observed that $(-10+2k)x+(10-a-8k+k^2)$ will be 0.

Therefore,
$$(-10+2k) = 0$$
 and $(10-a-8k+k^2) = 0$

For
$$(-10+2k) = 0$$
,

$$2 k = 10$$

And thus, k = 5

For
$$(10-a-8k+k^2)=0$$

$$10 - a - 8 \times 5 + 25 = 0$$

$$10 - a - 40 + 25 = 0$$

$$-5 - a = 0$$

Therefore, a = -5

Hence, k = 5 and a = -5