JSUJIL TUTOBRI
 ACBSE Coaching for O(athematics and Science

SAMPLE QUESTION PAPER CLASS-X (2017-18) MATHEMATICS

Time allowed: 3 Hours

Max. Marks:80

General Instructions:

(i) All questions are compulsory.
(ii) The question paper consists of $\mathbf{3 0}$ questions divided into four sections $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$ and \boldsymbol{D}.
(iii)Section A contains 6 questions of 1 mark each. Section B contains $\mathbf{6}$ questions of 2 marks each. Section C contains 10 questions of $\mathbf{3}$ marks each. Section \mathbf{D} contains 8 questions of 4 marks each.
(iv) There is no overall choice. However, an internal choice has been provided in four questions of 3 marks each and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
(v) Use of calculators is not permitted.

SECTION- A

Question numbers 1 to 6 carry 1 mark each.

1.If $a=2^{3} \times 3, b=2 \times 3 \times 5, c=3^{n} \times 5$ and $\operatorname{LCM}(a, b, c)=2^{3} \times 3^{2} \times 5$,then find n.
2. For what value of k are $2 k, k+10$ and $3 k+2$ in AP .
3. If in the given figure $D E$ II $B C$,then find the value of $A D$.

4. If $\sin \alpha=1 / 2, \quad \cos \beta=1 / 2$, find degree measure of $\alpha+\beta$.
5. Find the values of k if $2 x^{2}+k x+3=0$ has two equal real roots.
6. If $(2, p)$ is the mid point of line segment joining the points $A(6,5)$ and $B(-2,11)$, find value of p.

SECTION - B

Question numbers 7 to 12 carry 2 marks each.

7. If the H.C.F $(90,144)=18$, find the L.C.M $(90,144)$.
8. The 17th term of an AP exceeds its 10th term by 7. Find the common difference.
9. For what value of ' k ' will the following system of linear equations have infinite number of solutions.

$$
10 x+5 y-(k-5)=0 \text { and } \quad 20 x+10 y-k=0
$$

10. Prove that the points $(a, b+c)(b, c+a)$ and $(c, a+b)$ are collinear .
11. A box contains cards numbered from 1 to 17. A card is drawn at random from the box. Find the probability that the number of the card is
(i) a prime number
(ii) a multiple of 3.

12 .One card is drawn from a well shuffled 52 playing cards. Find the probability of getting
(i) a non-face card (ii) a black king or (ii) red queen

SECTION- C

Question numbers 13 to 22 carry 3 marks each.
13 Prove that $5+\sqrt{3}$ is an irrational number
14. If two zeroes of the polynomial $x^{4}+3 x^{3}-20 x^{2}-6 x+36$ are $\sqrt{2}$ and $-\sqrt{2}$, find the other zeroes of the polynomial.

OR

Find the zeroes of the quadratic polynomial $5 x^{2}-4-8 x$ and verify the relationship between the zeroe and the coefficients of the polynomial .
15. Represent the following system of linear equations graphically. $4 x-5 y+16=0$ and $2 x+y-6=0$ Shade the triangular region enclosed by the lines with X-axis.

JSUJIL TUTOBRI ACBSE Coaching for S(athematics and Science

16. $A B C$ is a right angle triangle, right angled at C. Let $B C=a, C A=b, A B=c$ and let p be the length of perpendicular from C on AB . Prove that: $\mathrm{cp}=\mathrm{ab}$ (ii) $\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$
$\mathbf{O R}, \ln \triangle A B C$, if $A D$ is the median, then show that $A B^{2}+A C^{2}=2\left(A D^{2}+B D^{2}\right)$
17.Evaluate $\quad \frac{\sin 25^{\circ}}{\cos 65^{\circ}}+\frac{\cot 15^{\circ}}{\tan 75^{\circ}}+\frac{2 \cos 43^{\circ} \cos e c 47^{\circ}}{\tan 10^{\circ} \tan 40^{\circ} \tan 50^{\circ} \tan 80^{\circ}}$
17. Show that the quadrilateral PQRS formed by $P(22,5), Q(7,10), R(12,11)$ and $S(3,24)$ is not a parallelogram.

OR, Find the point on x-axis which is equidistant from $(2,-5)$ and $(-2,9)$
19. If the Mode of following distribution table is 54 , find the value of p.

class	$0-15$	$15-30$	$30-45$	$45-60$	$60-75$	$75-90$
Frequency	3	5	p	16	12	7

20. Find the area of the shaded region in the given figure, where $A B C D$ is square of side $14 \mathrm{~cm} .(\pi=22 / 7$)

21. A quadrilateral $A B C D$ is drawn to circumscribe a circle as given in figure. Prove that $A B+C D=A D+B C$

22. A container, opghed pom the fop and made up of metal sheet, is in the shape of a frustum of a cone of height 16 cm with radii of its lower and upper ends as 8 cm and 20 cm respectively. Find the cost of the container if the cost of metal sheet used is Rs 8 per $100 \mathrm{~cm}^{2} .(\pi=3.14)$
OR, A toy is in the form of a cone mounted on hemisphere of diameter 7 cm . The total height of the toy is 14.5 m . Find the volume of the toy. ($\pi=22 / 7$)

SECTION-D

Question numbers 23 to $\mathbf{3 0}$ carry 4 marks each.

23. Solve for $\mathrm{x} . \frac{1}{a+b+x}=\frac{1}{a}+\frac{1}{b}+\frac{1}{x}, \quad a+b \neq 0$
24. Which term of the sequence $20,19 \frac{1}{4}, 18 \frac{1}{2}, 17 \frac{3}{4}, \ldots$ is the first negative term?
25. . Draw a triangle $A B C$ with side $B C=6 \mathrm{~cm}, A B=5 \mathrm{~cm}$ and $\angle A B C=60^{\circ}$. Then construct a triangle whose sides are $\frac{3}{4}$ of the corresponding sides of the triangle ABC.
26. Prove that, the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.

JSUJIL TUTOBAL ACBSE Coaching for S(athematics and Science

OR, Prove that in a triangle, if square of one side is equal to the sum of the squares of the other two sides, then the angle opposite the first side is a right angle.
27. Prove that $\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=1+\sec \theta \cdot \operatorname{cosec} \theta$ where is an acute angle.

OR
If $\sec \theta+\tan \theta=p$ prove that $\sin \theta=\frac{p^{2}-1}{p^{2}+1}$ where is an acute angle.
28. From the top of a building 60 m high the angles of depression of the top and the bottom of a tower are observed to be 30° and 60°. Find the height of the tower.
29.Three sides of a triangular field are $15 \mathrm{~m}, 16 \mathrm{~m}$ and 17 m with the three corners of the field a cow, a buffalo and a horse are tied separately with ropes of length 7 m each to graze the field. Find the area of the field which can not be grazed by the three animals. ($\pi=22 / 7$)
30.To highlight the child labour problem ,some students organized a javelin throw competition. 50
students participated in this competition. The distance (in metres) thrown are recorded below.

Distance (in metres)	$0-20$	$20-40$	$40-60$	$60-80$	$80-100$
Number of students	6	11	17	12	4

Draw less than type Ogive for the given data
Which value is depicted by the students?

OR

Students of a locality decided to create an awareness about 'Save Electricity Campaign'. They recorded the monthly consumption of electricity of 68 consumers of that locality.The following frequency distribution table gives the monthly consumption of electricity of these consumers of that locality.

Monthly consumption(in units)	Number of consumers
$65-85$	4
$85-105$	5
$105-125$	13
$125-145$	20
$145-165$	14
$165-185$	8
$185-205$	4

Find the median of the above data by using the formula.
Which value is depicted by the students ?

JSIJIL TUITOTAL
 ACBSE Coaching for OSathematics and Science

MARKING SCHEME(SAMPLE PAPER)

	SECTION -A	
1	$\mathrm{n}=2$	1
2	Given numbers are in AP $(k+10)-2 k=3 k+2-(k+10)$ Or $k=6$	1
3.	As DE II BC ,by BPT $A D / D B=A E / E C$ Or $A D=2.4 \mathrm{~cm}$	1
4.	$\begin{aligned} & \sin 30^{\circ}=1 / 2 \text { and } \cos 60^{\circ}=1 / 2 \\ & \alpha+\beta=90^{\circ} \end{aligned}$	1
5.	$k= \pm 2 \sqrt{6}$	1
6.	$p=\frac{-5+11}{2}=3$	1
	SECTION -B	
7.	$\begin{aligned} & \text { HCF X LCM }=90 \times 144 \\ & 18 \times \text { LCM }=90 \times 144 \\ & \text { LCM }=720 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
8.	Let the first term=a and the common difference $=\mathrm{d}$ $\begin{aligned} & a+16 d=a+9 d+7 \\ & d=1 \end{aligned}$	
9.	For Infinite solutions $\frac{a 1}{a 2}=\frac{b 1}{b 2}=\frac{c_{1}}{c 2}$ $\begin{gathered} \frac{\mathrm{k}-5}{\mathrm{k}}=\frac{1}{2} \\ \Rightarrow k=10 \end{gathered}$	$1 / 2$
10.	$\begin{aligned} & \text { area }=\frac{[\mathrm{a}(\mathrm{c}+\mathrm{a}-\mathrm{a}-\mathrm{b})+\mathrm{b}(\mathrm{a}+\mathrm{b}-\mathrm{b}-\mathrm{c})+\mathrm{c}(\mathrm{~b}+\mathrm{c}-\mathrm{c}-\mathrm{a})]}{2} \\ & =\frac{\mathrm{ac}-\mathrm{ab}+\mathrm{ab}-\mathrm{bc}+\mathrm{bc}-\mathrm{ac}}{2}=0 \end{aligned}$ The given points are collinear.	$1 / 2$ $1 / 2$
11.	(i) P (a prime number) $=\frac{7}{17}$ (ii) $P($ a multiple of 3$)=\frac{5}{17}$	1+1

JSUJIL TUTO: ACBSE Coaching for Sathematics and Science

12.	$\mathrm{P}(\mathrm{a}$ non face card $)=10 / 13 \quad \mathrm{P}(\mathrm{a}$ black king or red queen $)=1 / 13$	1+1
	SECTION C	
13	Let $5+\sqrt{ } 3$ is a rational number .So $5+\sqrt{ } 3=\frac{a}{b}$ where $a \& b$ are co-prime integers and $b \neq 0$ After simplification $\sqrt{ } 3=\frac{a-5 b}{b}$ Which contradicts the fact that $\sqrt{ } 3$ is an irrational number and hence $5+\sqrt{ } 3$ is an irrational number.	1 1 1
14.	Let $f(x)=x^{4}+3 x^{3}-20 x^{2}-6 x+36$ Since $\sqrt{2}$ and $-\sqrt{2}$ are zeroes of $f(x)$ $\therefore(x-\sqrt{2})(x+\sqrt{2})=x^{2}-2$ is a factor of $f(x)$ Division algorithm, we have $x^{4}+3 x^{3}-20 x^{2}-6 x+36$ $\begin{aligned} & =\left(x^{2}-2\right)\left(x^{2}+3 x-16\right) \\ & =\left(x^{2}-2\right)(x+6)(x-3) \end{aligned}$ \therefore The other zeroes are - 6 and 3 OR $\begin{aligned} & 5 x^{2}-4-8 x=5 x^{2}-8 x-4 \\ & =5 x^{2}-10 x+2 x-4 \\ & =(5 x+2)(x-2) \end{aligned}$ Zeroes are -2/5, 2 Sum of zeroes $2+\left(\frac{-2}{5}\right)=\frac{8}{5}=\frac{\text { coerfficent of } x}{\text { coefficient of } x^{2}}$ $\text { Product of zeres }=2\left(\frac{-2}{5}\right)=\left(\frac{-4}{5}\right)=\frac{\text { constantterm }}{\text { coefficient of } x^{2}}$	1 $1 \frac{1}{2}$ $1 / 2$ 1 $1+1$
15.	Finding correct set of solutions for the pair of equations . Correct plotting of points on graph and joining of points. Shading of the triangular region enclosed with X-axis.	1 $1 \frac{1}{2}$ $1 / 2$

JSUNIL THOBAL
 ACBSE Coaching for O(athematics and Science

ACBSE Coaching for 9 (athematics and Science

\begin{tabular}{|c|c|c|}
\hline \& \[
\begin{aligned}
\& =\frac{\sin \left(90^{\circ}-65^{\circ}\right)}{\cos 65^{\circ}}+\frac{\cot \left(90^{\circ}-75^{\circ}\right)}{\tan 75^{\circ}}+\frac{2 \cos 43^{\circ} \operatorname{cosec}\left(90^{\circ}-43^{\circ}\right)}{\tan \left(90^{\circ}-80^{\circ}\right) \tan \left(90^{\circ}-50^{\circ}\right) \tan 50^{\circ} \tan 80^{\circ}} \\
\& =\frac{\cos 65^{\circ}}{\cos 65^{\circ}}+\frac{\tan 75^{\circ}}{\tan 75^{\circ}}+\frac{2 \cos 43^{\circ} \sec 43^{\circ}}{\cot 80^{\circ} \cot 50^{\circ} \tan 50^{\circ} \tan 80^{\circ}} \\
\& =1+1+\frac{2}{1 \times 1}=4
\end{aligned}
\] \& 1
1 \\
\hline 18. \& \begin{tabular}{l}
\[
\begin{aligned}
\& \mathrm{PQ}=5 \mathrm{~V} 10 \\
\& \mathrm{QR}=\sqrt{ } 26 \\
\& \mathrm{RS}=5 \mathrm{~V} 10 \\
\& \mathrm{SP}=19 \sqrt{ } 2
\end{aligned}
\] \\
Here \(Q R \neq S P\). So quadrilateral \(P Q R S\) is not a parallelogram. \\
OR \\
Let \(P(x, 0)\) is equidistant from point \(A(2,-5)\) and \(B(-2,9)\)
\[
\begin{aligned}
\& \quad \mathrm{AP}=\mathrm{BP} \\
\& \sqrt{(x-2)^{2}+(0+5)^{2}}=\sqrt{(x+2)^{2}+(0-9)^{2}} \\
\& x=-7
\end{aligned}
\] \\
The point on the \(x\)-axis equidistant from the given points is \((-7,0)\)
\end{tabular} \& \begin{tabular}{l}
\(4 x^{1 / 2}\) \\
1 \\
\(1 / 2\) \\
1 \\
1 \\
\(1 / 2\)
\end{tabular} \\
\hline 19. \& Modal class is 45-60
\[
\begin{aligned}
\& \mathrm{l}=45, \mathrm{f}_{1}=16, \mathrm{f}_{0}=\mathrm{p}, \mathrm{f}_{2}=12, \mathrm{~h}=15 \\
\& 54=45+\frac{16-p}{32-p-12} \times 15 \quad \text { Or } \mathrm{p}=10
\end{aligned}
\] \& \(1 / 2\) 1
\[
1 / 2+1
\] \\
\hline 20. \& \begin{tabular}{l}
\[
\begin{gathered}
\text { Area of square } A B C D=14 \times 14=196 \mathrm{~cm}^{2} \\
\text { Diameter }=7 \mathrm{~cm}, r=7 / 2 \mathrm{~cm} \\
\text { Area of } 4 \text { circles }=4 \times \frac{22 \times 7 \times 7}{7 \times 2 \times 2}=154 \mathrm{~cm}^{2}
\end{gathered}
\] \\
Area of shaded region \(=\) Area of square ABCD- Area of 4 circles \(=196-154=42 \mathrm{~cm}^{2}\)
\end{tabular} \& \begin{tabular}{l}
\[
1
\] \\
1
\[
1
\]
\end{tabular} \\
\hline 21. \& \begin{tabular}{l}
We know that the tangents to a circle from an external point are equal in length.
\[
\begin{align*}
\& \mathrm{AP}=\mathrm{AS} . . . \tag{i}\\
\& \mathrm{CR}=\mathrm{CQ} . . \tag{ii}
\end{align*}
\] \\
\(B P=B Q\) \(\qquad\) \\
DR = DS \\
(iv)
\(\qquad\) \\
Adding (i), (ii), (iii) \& (iv), we get
\[
(A P+B P)+(C R+D R)=(A S+D S)+(B Q+C Q)
\] \\
or, \(A B+C D=A D+B C\) \\
-
\end{tabular} \& \(4 x^{1 / 2} 2\)

1

\hline
\end{tabular}

JSUJIL TUTOBIAL
 ACBSE Coaching for M(athematics and Science

22.	Calculating $\mathrm{I}=20 \mathrm{~cm}$ Area of metal sheet $=\Pi\left(r_{1}+r_{2}\right) I+\Pi r_{1}{ }^{2}$ $=1959.36 \mathrm{~cm}^{2}$ Cost of metal sheet $=\operatorname{Rs} \frac{8 \times 1959.36}{100}=R s 156.75$ OR Radius of hemisphere $=\frac{7}{2}=3.5 \mathrm{~cm}$ Height of cone $=(14.5-3.5)=11 \mathrm{~cm}$ Now, volume of toy $=$ Volume of hemisphere + Volume of cone $\begin{aligned} & =\frac{2}{3} \pi r^{3}+\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi r^{2}(2 r+h) \\ & =\frac{1}{3} \times \frac{22}{7} \times\left(\frac{7}{2}\right)^{2}\left(2 \times \frac{7}{2}+11\right) \mathrm{cm}^{3} \\ & =231 \mathrm{~cm}^{3} \end{aligned}$	$1 / 2$ $1 / 2$ 1 1 1
	SECTION D	
23.	$\begin{aligned} & \frac{1}{a+b+x}-\frac{1}{x}=\frac{1}{a}+\frac{1}{b} \\ & \frac{1}{a+b+x}-\frac{1}{x}=\frac{1}{a}+\frac{1}{b} \\ & \frac{-(a+b)}{x(a+b+x)}=\frac{a+b}{a b} \end{aligned}$ $\text { or, } \quad x(a+b+x)+a b=0$ $x^{2}+a x+b x+a b=0$ $x(x+a)+b(x+a)=0$ or, $\quad(x+a)(x+b)=0$ $x=-a \quad \text { or } \quad x=-b$	1 1 1 1
24	Let the $\mathrm{n}^{\text {th }}$ term of the given AP be the first negative term. Then $\mathrm{a}_{\mathrm{n}}<0$ $\begin{aligned} & \text { or, } a+(n-1) d<0 \\ & \text { or, } 20+(n-1)\left(-\frac{3}{4}\right)<0 \\ & \text { or, } 83-3 n<0 \text { or, } 3 n>83 \quad \text { or, } n>\frac{83}{3} \text { or, } n>27 \frac{2}{3} \\ & \therefore n \geq 28 \end{aligned}$ Thus, $28^{\text {th }}$ term of the given sequence is the first negative term.	1 1 1 1

JSUJIL TUTIMAL ACBSE Coaching for SGathematics and Science

25	Construction of $\triangle A B C$ Construction of similar triangle	1
26	Given, To prove ,figure and construction Correct proof	
27	$\begin{aligned} & \frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta} \\ & =\frac{\frac{\sin \theta}{\cos \theta}}{1-\frac{\cos \theta}{\sin \theta}}+\frac{\frac{\cos \theta}{\sin \theta}}{1-\frac{\sin \theta}{\cos \theta}} \\ & =\frac{(\sin \theta)^{3}-(\cos \theta)^{3}}{(\sin \theta-\cos \theta) \cos \theta \cdot \sin \theta} \\ & =\frac{1+\cos \theta \cdot \sin \theta}{\cos \theta \cdot \sin \theta} \\ & =\frac{1}{\cos \theta \cdot \sin \theta}+\frac{\cos \theta \cdot \sin \theta}{\cos \theta \cdot \sin \theta} \\ & =\sec \theta \cdot \operatorname{cosec} \theta+1 \end{aligned}$ OR $\begin{aligned} & \sec \theta+\tan \theta=p \\ & \Rightarrow \frac{1}{\cos \theta}+\frac{\sin \theta}{\cos \theta}=p \\ & \Rightarrow \frac{(1+\sin \theta)^{2}}{1-\sin ^{2} \theta}=p^{2} \\ & \Rightarrow \frac{1+\sin \theta}{1-\sin \theta}=p^{2} \\ & \Rightarrow \frac{p^{2}+1}{p^{2}-1}=\frac{1+\sin \theta+1-\sin \theta}{1+\sin \theta-1+\sin \theta} \\ & \Rightarrow \frac{p^{2}+1}{p^{2}-1}=\frac{2}{2 \sin \theta}=\frac{1}{\sin \theta} \\ & \Rightarrow \frac{p^{2}-1}{p^{2}+1}=\sin \theta \end{aligned}$	1
28		

JSUJIL TUTOBIAL
 ACBSE Coaching for SGathematics and Science

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
For correct figure \\
Let \(A B=\) Building, \(C D=\) Tower,\(A C=D E=x\) \\
In, \(\triangle\) DEB \(\quad \tan 30^{\circ}=\frac{B E}{D E}\) \\
or, \(\frac{1}{\sqrt{3}}=\frac{60-h}{x} \quad\) or \(\quad x=(60-h) \sqrt{3} \ldots \ldots\) (\\
In, \(\triangle C A B, \quad \tan 60^{\circ}=\frac{A B}{C A} \quad\) or \(\quad \sqrt{3}=\frac{60}{x}\) \\
or \(x=\frac{60}{\sqrt{3}}\) \\
From (i) \& (ii) \((60-h) \sqrt{3}=\frac{60}{\sqrt{3}}\) \\
or \(h=40 \mathrm{~m}\) \\
Thus, the height of the tower is 40 m .
\end{tabular} \& \[
\begin{align*}
\& 1 \\
\& 1 \\
\& 1 \\
\& 1 \tag{i}
\end{align*}
\] \\
\hline 29 \& \begin{tabular}{l}
Area of three sectors
\[
\begin{aligned}
\& =\frac{\alpha}{360^{\circ}} \times \pi r^{2}+\frac{\beta}{360^{\circ}} \times \pi r^{2}+\frac{\gamma}{360^{\circ}} \times \pi r^{2} m^{2} \\
\& =\frac{(\alpha+\beta+\gamma)}{360^{\circ}} \times \frac{22}{7} \times 7^{2} m^{2} \\
\& =77 m^{2} \\
\& s=\frac{15+16+17}{2} m=24 m
\end{aligned}
\] \\
Area of the triangle \(=\begin{aligned} \& \sqrt[s(s-a)(s-b)(s-c)]{ } \\ \& =24 \sqrt{21} \mathrm{~m}^{2}\end{aligned}\) \\
Area of the field which can not be grazed by the three animals \(=(24 \sqrt{21}-77) m^{2}\)
\end{tabular} \& 1
1
1

$1 / 2$

$1 / 2$
1
$1 / 2$

\hline
\end{tabular}

JSUJIL TUTO: ACBSE Coaching for S(athematics and Science

Note- Proportionate marks are to be awarded for any alternate correct answers .

